• Title/Summary/Keyword: Projectile Sound

Search Result 3, Processing Time 0.016 seconds

Improvement Method and Experiment Analysis of Sniper Distance Estimation Using Linear Microphone Array (선형마이크로폰 어레이를 이용한 저격수 거리추정 개선방법과 실험 분석)

  • Jung, Seungwoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.447-455
    • /
    • 2018
  • If a hidden enemy is shooting, there is a threat against soldiers in recent conflicts. This paper aims to improve the localization of a muzzle using microphone array. Gunshot noise can provide information about the location of muzzle with two signals, the muzzle blast from the gun barrel and the projectile sound from the bullet. Two signals arrive to the microphone array with different arrival time and angle. If the arrival angles of the two signals are estimated, distance between sniper location and the microphone array can be calculated by using geometric principles. This method was established in 2003 by Pare. But this method has a limitation that it cannot calculate the distance when the arrival angles of the two signals are same. Also it has an error when the angle difference of arrival is small. In order to overcome this limitation, a new method is proposed that uses the change of characteristic of the projectile sound with respect to vertical distance from the trajectory. The proposed method estimates the distance correctly when the arrival angle of two signals are same, and when the angle difference between two signals is increased, the estimation error increases with respect to the angle. Therefore these two methods can be selected according to the angle difference between two signals to estimate the distance of the muzzle. Below the threshold of the angle difference, the proposed method can be used to estimate distance with smaller error than the existing method. This was demonstrated by shooting tests using actual sniper rifles.

Improvement of Muzzle Localization Using Linear Microphone Array (선형마이크로폰 어레이를 이용한 총구 거리 추정 개선 방법)

  • Jung, Seong-Woo;Kim, Yang-Hann
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.1
    • /
    • pp.60-65
    • /
    • 2015
  • In this paper, we used the sound of gunshots recorded by multiple microphones to increase the accuracy of the calculation of the distance between sniper and the microphone array. This method is crucial for achieving military objectives. Gunshots are comprised of the explosion of driving gas from the muzzle and the supersonic shock wave from the flying bullet. The original distance calculation method compares the time difference of arrival and angle of incidence to estimate the sniper's location. The disadvantage of this method is that when the angles of incidence coincide the margin of error increases, to solve this problem we suggest a new method using the characteristic changes of the shock wave with the increase of perpendicular distance between the microphone and the trajectory of the bullet. This theory is verified by experiments.

A Computation Method for Time of Flight in the Anti-Aircraft Gun Fire Control System (대공화기 탄자비행시간 계산 기법)

  • Kim, Jaehun;Kim, Euiwhan;Yu, Sukjin;Kim, Sungho
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.4 no.11
    • /
    • pp.361-368
    • /
    • 2015
  • In AAGFCS the effective range is regarded as a range for the bullet's speed exceeding the speed of sound to damage the stationary target. Hence the real engagement range might be extended over the effective range for the approaching target since bullet's relative speed to the target increases depending on the approaching speed. However previous TOF equations have good computation accuracy within the effective range only, and they can not be used above that range due to their bad accuracy. We propose an accurate TOF computation method which can be used both within and above the effective range in real time. Some simulation results are shown to demonstrate usefulness of our algorithm for the 30mm projectile.