• Title/Summary/Keyword: Progressive failure analysis

Search Result 190, Processing Time 0.021 seconds

Reliability Evaluation of a Composite Pressure Vessel (복합재 압력 용기의 신뢰도 예측)

  • Hwang Tae-Kyung;Park Jae-Beom;Kim Hyoung-Geun;Doh Young-Dae;Moon Soon-Il
    • Composites Research
    • /
    • v.19 no.3
    • /
    • pp.7-14
    • /
    • 2006
  • In this paper, an integrated probabilistic strength analysis was conducted to predict the reliability of a composite pressure vessel under inner pressure loading condition. As a probabilistic strength analysis, the probabilistic progressive failure model consisting of progressive failure model and Monte Carlo simulation was incorporated with a commercial FEA code, ABAQUS Standard, to perform the probabilistic failure analysis of composite structure which has a complex shape and boundary conditions. As design random variables, the laminar strengths of each direction were considered. Finally, from probabilistic strength analysis, the scattering of burst pressure could be explained and the reliability of composite pressure vessel could be obtained for each component. In case of composite structures in mass production, the effects of uncertainties in material and manufacturing on the performance of composite structures would apparently become larger. So, the probabilistic strength analysis is essential for the structural design of composite structures in mass production.

Cause of Rall Road Slope Failure and Determination of Soil Strength for Remedy (철도사면파괴 원인 및 대책공법 적용을 위한 강도정수 결정)

  • Lee, Seung-Hyun;Kim, Byoung-Il
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.3 s.14
    • /
    • pp.25-31
    • /
    • 2004
  • Rail road slope can be fatted because of existence of unexpected soft subsoil. Purpose of this study is verifying the cause of rail road slope failure and determination of soil strength for remedy. Drilling some boreholes, cone penetration test and field vane test were executed in order to find out the cause of slope failure. In addition, laboratory test was conducted in order to determine soil strength of soft soil sampled as undisturbed state. As a result of both the in-situ and the laboratory tests, the cause of slope failure is thought to be propagation of failure zone by progressive rupture of overconsolidated clay Soft soil strength was determined through back analysis of the failed slope.

Visualization analysis of the progressive failure mechanism of tunnel face in transparent clay

  • Lei, Huayang;Zhai, Saibei;Liu, Yingnan;Jia, Rui
    • Geomechanics and Engineering
    • /
    • v.29 no.2
    • /
    • pp.193-205
    • /
    • 2022
  • The face stability of shield tunnelling is the most important control index for safety risk management. Based on the reliability of the transparent clay (TC) model test, a series of TC model tests under different buried depth were conducted to investigate the progressive failure mechanism of tunnel face. The support pressure was divided into the rapid descent stage, the slow descent stage and the basically stable stage with company of the local failure and integral failure in the internal of the soil during the failure process. The relationship between the support pressure and the soil movement characteristics of each failure stage was defined. The failure occurred from the soil in front of the tunnel face and propagated as the slip zone and the loose zone. The fitted formulas were proposed for the calculation of the failure process. The failure mode in clay was specified as the basin shape with an inverted trapezoid shape for shallow buried and appeared as the basin shape with a teardrop-like shape in deep case. The implications of these findings could help in the safety risk management of the underground construction.

Progressive Damage and Failure Analysis of Open-Hole Composite Specimens Under Compressive Loading Using Finite Element Analysis (유한요소해석을 이용한 압축 하중을 받는 오픈 홀 복합재 시편의 점진적 손상 및 파손 분석)

  • Young Cheol Kim;Geunsu Joo;Hong-Kyu Jang;Jinbong Kim;Min-Gyu Kang;Woo-Kyoung Lee;Ji Hoon Kim
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.303-309
    • /
    • 2023
  • In this paper, a Progressive Damage and Failure Analysis (PDFA) modeling method was developed using ABAQUS/EXPLICIT to predict in-plane damage and delamination for Open-Hole Compression (OHC) testing. The proposed PDFA model was constructed based on Hashin criteria and cohesive behavior. The strength and stiffness of OHC specimens with three types of stacking sequences [(45/-45/02)3]s , [(45/0/-45/90)3]s and [45/-45/0/45/-45/90/(45/-45)2]s were compared to comprehensively evaluate the validity of the Finite Element(FE) model of PDFA. The strength and stiffness of the OHC specimens were predicted relatively well, with less than a percentage error 10.0 %. For the numerical simulation case for each layup, the damage initiation/evolution of OHC specimens were evaluated for delamination and tension/compression matrix damage before and after failure.

Impact Behavior of Laminated Composite using Progressive Failure Model (단계적 파괴 모델에 의한 적층 복합재료의 충격거동 해석)

  • 강문수;이경우;강태진
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.102-105
    • /
    • 2000
  • Recently, applications of integrated large composite structures have been attempted to many structures of vehicles. To improve the cost performance and reliability of the integrated composite structures, it is necessary to judge structural integrity of the composite structures. For the judgement, we need fracture simulation techniques for composite structures. Many researches oil the fracture simulation method using FEM have been reported by now. Most of the researches carried out simulations considering only matrix cracking and fiber breaking as fracture modes, and did not consider delamination. Several papers have reported the delamination simulation, but all these reports require three-dimensional elements or quasi three- dimensional elements for FEM analysis. Among fracture mechanisms of composite laminates, delamination is the most important factor because it causes stiffness degradation in composite structures. It is known that onset and propagation of delamination are dominated by the strain energy release rate and interfacial moment. In this study, laminated composite has been described by using 3 dimensional finite elements. Then impact behavior of the laminated composite is simulated using FEM(ABAQUS/Explicit) with progressive failure mechanism. These results are compared with experimental results.

  • PDF

Evaluation of Progressive Collapse Resisting Capacity of Special Concentrically Braced Frames (특수 중심가새골조의 연쇄붕괴 저항능력 평가)

  • Lee, Young-Ho;Kim, Jin-Koo;Choi, Hyun-Hoon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.319-324
    • /
    • 2008
  • In this study the progressive collapse potential of special concentrically braced frames were investigated using the nonlinear static. All of seven different brace types were considered. According to the pushdown analysis results, most braced frames designed according to current design codes satisfied the design guidelines for progressive collapse initiated by loss of a first story mid-column; however most model structures showed brittle failure mode. This was caused by buckling of columns after compressive braces buckled. Among the braced frames considered, the inverted-V type braced frames showed superior ductile behavior during progressive collapse.

  • PDF

Progressive Collapse and Seismic Performance of Twisted Diagrid Buildings

  • Kwon, Kwangho;Kim, Jinkoo
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.3
    • /
    • pp.223-230
    • /
    • 2014
  • In this study the progressive collapse resisting capacities of tall diagrid buildings were evaluated based on arbitrary column removal scenario, and the seismic load-resisting capacities were investigated through fragility analysis and ATC 63 procedure. As analysis model structures both regular and twisted diagrid structures were designed and their load-resisting capacities were compared by nonlinear static and dynamic analyses. The analysis results showed that the progressive collapse potential of twisted buildings decreased as the twisting angle increased, but the seismic fragility or the probability of failure decreased as the twisting angle increased.

2D and 3D numerical analysis on strut responses due to one-strut failure

  • Zhang, Wengang;Zhang, Runhong;Fu, Yinrong;Goh, A.T.C.;Zhang, Fan
    • Geomechanics and Engineering
    • /
    • v.15 no.4
    • /
    • pp.965-972
    • /
    • 2018
  • In deep braced excavations, struts and walers play an essential role in the whole supporting system. For multi-level strut systems, accidental strut failure is possible. Once a single strut fails, it is possible for the loads carried from the previous failed strut to be transferred to the adjacent struts and therefore cause one or more struts to fail. Consequently, progressive collapse may occur and cause the whole excavation system to fail. One of the reasons for the Nicoll Highway Collapse was attributed to the failure of the struts and walers. Consequently, for the design of braced excavation systems in Singapore, one of the requirements by the building authorities is to perform one-strut failure analyses, in order to ensure that there is no progressive collapse when one strut was damaged due to a construction accident. Therefore, plane strain 2D and three-dimensional (3D) finite element analyses of one-strut failure of the braced excavation system were carried out in this study to investigate the effects of one-strut failure on the adjacent struts.

Effect of connection stiffness on the earthquake-induced progressive collapse

  • Ali, Seyedkazemi;Mohammad Motamedi, Hour
    • Earthquakes and Structures
    • /
    • v.23 no.6
    • /
    • pp.503-515
    • /
    • 2022
  • Global or partial damage to a structure due to the failure of gravity or lateral load-bearing elements is called progressive collapse. In the present study, the alternate load path (ALP) method introduced by GSA and UFC 4-023-03 guidelines is used to evaluate the progressive collapse in special steel moment-resisting frame (SMRF) buildings. It was assumed that the progressive collapse is due to the earthquake force and its effects after the removal of the elements still remain on the structures. Therefore, nonlinear dynamic time history analysis employing 7 earthquake records is used to investigate this phenomenon. Internal and external column removal scenarios are investigated and the stiffness of the connections is changed from semi-rigid to rigid. The results of the analysis performed in the OpenSees program show that the loss of the bearing capacity of an exterior column due to a seismic event and the occurrence of progressive collapse can increase the inter-story drift of the structure with semi-rigid connections by more than 50% and make the structure unable to satisfy the life safety performance level. Furthermore, connection stiffness severely affects the redistribution of forces and moments in the adjacent elements of the removed column.

Goodness of Fit Tests for the Exponential Distribution based on Multiply Progressive Censored Data (다중 점진적 중도절단에서 지수분포의 적합도 검정)

  • Yun, Hyejeong;Lee, Kyeongjun
    • Journal of the Korean Data Analysis Society
    • /
    • v.20 no.6
    • /
    • pp.2813-2827
    • /
    • 2018
  • Progressive censoring schemes have become quite popular in reliability study. Under progressive censored data, however, some units can be failed between two points of observation with exact times of failure of these units unobserved. For example, loss may arise in life-testing experiments when the failure times of some units were not observed due to mechanical or experimental difficulties. Therefore, multiply progressive censoring scheme was introduced. So, we derives a maximum likelihood estimator of the parameter of exponential distribution. And we introduced the goodness-of-fit test statistics using order statistic and Lorenz curve. We carried out Monte Carlo simulation to compare the proposed test statistics. In addition, real data set have been analysed. In Weibull and chi-squared distributions, the test statistics using Lorenz curve are more powerful than test statistics using order statistics.