• Title/Summary/Keyword: Progress of nuclear medicine

Search Result 112, Processing Time 0.03 seconds

The Healing Effect of Jinmu-tang (Zhenwu-tang) in Femur Fractured Rats (진무탕(眞武湯)이 흰쥐의 대퇴골 골절 치유에 미치는 실험적 연구)

  • Park, Jung-Oh;Oh, Min-Seok
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.30 no.2
    • /
    • pp.19-35
    • /
    • 2020
  • Objectives The aim of this study is to evaluate the fracture healing effect of Jinmu-tang (JM) on femur fractured rats. Methods Rats were randomly divided into 5 groups (normal, control, positive control, JM extract with low concentration and JM extract with high concentration). All group except normal group went through both femur fracture. Normal and control group received no treatment at all. Positive control group were medicated with tramadol (20 mg/kg) once a day for 14 days. Experimental group was orally medicated with JM extract (10 mg/kg for low concentration, 50 mg/kg for high concentration) once a day for 14 days. In order to investigate fracture healing process, plasma and serum were obtained. Also, micro-computed tomography was conducted to see the frature site visually. Immunohistochemistry for transforming growth factor-β1, Ki67, alkaline phosphatase, runt-related transcription factor 2, receptor activator of nuclear factor kappa-β, tartrate resistant acid phosphatase was conducted to observe bone healing progress after 14 days since fracture occured. Aspartate aminotransferase, alanine aminotransferase, blood urea nitrogen and creatinine levels were measured in plasma, for hepatotoxicity and nephrotoxicity of JM extract. Osteocalcin was measured to observe activity of osteoblast. Results Through Micro-CT, more fracture healing was observed on both experimental group than control and positive control group. Through Hematoxylin & Eosin and safranin O staining showed bone cell proliferation and bone formation in the experimental group. RANK was significantly increased in the experimental groups. JM with high concentration showed statistically significant of TGF-β and Osteocalcin. NO, TRAP and ALP were not significantly changed. Liver toxicity was not significantly observed. Creatinine significantly increased in both experimental groups after 28 days. Conclusions As described above, JM extract showed anti-inflammatory effect, promoted fracture healing by stimulating the bone regeneration factor, and showed little hepatotoxicity and nephrotoxicity. In conclusion, JM extract can promote fracture healing and it can be used clinically to patients with fracture.

Advancement and Application of Somatic Cell Nuclear Transfer Technique in Dog

  • Oh, H.J.;Hong, S.G.;Park, J.E.;Kim, M.J.;Gomez, M.N.;Kim, M.K.;Kang, J.T.;Kim, J.E.;Jang, G.;Lee, B.C.
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2009.02a
    • /
    • pp.49-57
    • /
    • 2009
  • The cloning of canids was succeeded in 2005, several years after the birth of Dolly the sheep and also after the cloning of numerous other laboratory and farm animal species. The delay of successful somatic cell nuclear transfer (SCNT)was due to the unique reproductive characteristics of the female dogin comparison to other domestic mammals, such as ovulation of immature canine oocyte and a requirement of 25 days for the completion of meiosis within the oviduct (Holst & Phemister, 1971). When the technology for the recovery of in vivo matured oocyte was established, the application of cloning also became possible and cloned dog offspring were obtained. This report summarizes the progress of technical procedures that are required for cloning canids and the application of this technique. The first cloned dog, Snuppy, was achieved using an in vivo-matured oocyte which was enucleated and transferred with an adult skin cell of male Afghan hound. After establishment of a criterion of well-matured oocyte for the improvement of SCNT efficiency, we obtained three cloned female Afghan hound and a toy poodle cloned from 14 year-old aged Poodle using SCNT through this factor. To date, cloned dogs appeared to be normal and those that have reached puberty have been confirmed to be fertile. Through application of canine SCNT technique, first, we demonstrated that SNCT is useful for conserving the breed of endangered animal from extinction through cloning of endangered gray wolves using inter-species SCNT and keeping the pure pedigree through the cloning of Sapsaree, a Korean natural monument. Secondly, we showed possibility of human disease model cloned dog and transgenic cloned dog production through cloning of red fluorescent protein expressing dog. Finally, SCNT can be used for the propagation of valuable genotypes for making elite seed stock and pet dog. In summary, dog cloning is a reproducible technique that offers the opportunity to preserve valuable genetics and a potential step towards the production of gene targeted transgenic cloned dogs for the study of human diseases.

  • PDF

Recent advances of aromatic C-F bond borylation and its application to positron emission tomography

  • Song, Dalnim;Lee, Sanghee;Lee, Byung Chul;Kim, Sang Eun;Lee, Eunsung
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.1 no.2
    • /
    • pp.80-87
    • /
    • 2015
  • Carbon-fluorine (C-F) bonds have been found ubiquitously in pharmaceuticals, radiopharmaceuticals, agrochemicals, and material science due to their unique properties such as thermal and oxidative stability and lipophilicity to improve bioavailability. For the past five years, there have been significant advances in F-18 fluorination of aromatic complex molecules combined with the development of late-stage fluorination reactions. More recently, direct incorporation of F-18 to fluorinated aromatic molecules via borylation of C-F bonds has been developed by Niwa and Hosoya. In this minireview, we will discuss the progress of C-F bondborylation of fluorinated arenes utilizing transition metal catalysts and the impact on the development of F-18 radiotracers for positron emission tomography (PET).

TET2DICOM-GUI: Graphical User Interface Based TET2DICOM Program to Convert Tetrahedral-Mesh-Phantom to DICOM-RT Dataset

  • Se Hyung Lee;Bo-Wi Cheon;Chul Hee Min;Haegin Han;Chan Hyeong Kim;Min Cheol Han;Seonghoon Kim
    • Progress in Medical Physics
    • /
    • v.33 no.4
    • /
    • pp.172-179
    • /
    • 2022
  • Recently, tetrahedral phantoms have been newly adopted as international standard mesh-type reference computational phantoms (MRCPs) by the International Commission on Radiological Protection, and a program has been developed to convert them to computational tomography images and DICOM-RT structure files for application of radiotherapy. Through this program, the use of the tetrahedral standard phantom has become available in clinical practice, but utilization has been difficult due to various library dependencies requiring a lot of time and effort for installation. To overcome this limitation, in this study a newly developed TET2DICOM-GUI, a TET2DICOM program based on a graphical user interface (GUI), was programmed using only the MATLAB language so that it can be used without additional library installation and configuration. The program runs in the same order as TET2DICOM and has been optimized to run on a personal computer in a GUI environment. A tetrahedron-based male international standard human phantom, MRCP-AM, was used to evaluate TET2DICOM-GUI. Conversion into a DICOM-RT dataset applicable in clinical practice in about one hour with a personal computer as a basis was confirmed. Also, the generated DICOM-RT dataset was confirmed to be effectively implemented in the radiotherapy planning system. The program developed in this study is expected to replace actual patient data in future studies.

Comparison of Activity Capacity Change and GFR Value Change According to Matrix Size during 99mTc-DTPA Renal Dynamic Scan (99mTc-DTPA 신장 동적 검사(Renal Dynamic Scan) 시 동위원소 용량 변화와 Matrix Size 변경에 따른 사구체 여과율(Glomerular Filtration Rate, GFR) 수치 변화 비교)

  • Kim, Hyeon;Do, Yong-Ho;Kim, Jae-Il;Choi, Hyeon-Jun;Woo, Jae-Ryong;Bak, Chan-Rok;Ha, Tae-Hwan
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.24 no.1
    • /
    • pp.27-32
    • /
    • 2020
  • Purpose Glomerular Filtration Rate(GFR) is an important indicator for evaluating renal function and monitoring the progress of renal disease. Currently, the method of measuring GFR in clinical trials by using serum creatinine value and 99mTc-DTPA(diethylenetriamine pentaacetic acid) renal dynamic scan is still useful. After the Gates method of formula was announced, when 99mTc-DTPA Renal dynamic scan is taken, it is applied the GFR is measured using a gamma camera. The purpose of this paper is to measure the GFR by applying the Gates method of formula. It is according to effect activity and matrix size that is related in the GFR. Materials and Methods Data from 5 adult patients (patient age = 62 ± 5, 3 males, 2 females) who had been examined 99mTc-DTPA Renal dynamic scan were analyzed. A dynamic image was obtained for 21 minutes after instantaneous injection of 99mTc-DTPA 15 mCi into the patient's vein. To evaluate the glomerular filtration rate according to changes in activity and matrix size, total counts were measured after setting regions of interest in both kidneys and tissues in 2-3 minutes. The distance from detector to the table was maintained at 30cm, and the capacity of the pre-syringe (PR) was set to 15, 20, 25, 30 mCi, and each the capacity of post-syringe (PO) was 1, 5, 10, 15 mCi is set to evaluate the activity change. And then, each matrix size was changed to 32 × 32, 64 × 64, 128 × 128, 256 × 256, 512 × 512, and 1024 × 1024 to compare and to evaluate the values. Results As the activity increased in matrix size, the difference in GFR gradually decreased from 52.95% at the maximum to 16.67% at the minimum. The GFR value according to the change of matrix size was similar to 2.4%, 0.2%, 0.2% of difference when changing from 128 to 256, 256 to 512, and 512 to 1024, but 54.3% of difference when changing from 32 to 64 and 39.43% of difference when changing from 64 to 128. Finally, based on the presently used protocol, 256 × 256, PR 15 mCi and PO 1 mCi, the GFR value was the largest difference with 82% in PR 15 mCi and PO 1 mCi. conditions, and at the least difference is 0.2% in the conditions of PR 30 mCi and PO 15 mCi. Conclusion Through this paper, it was confirmed that when measuring the GFR using the gate method in the 99mTc-DTPA renal dynamic scan. The GFR was affected by activity and matrix size changes. Therefore, it is considered that when taking the 99mTc-DTPA renal dynamic scan, is should be careful by applying appropriate parameters when calculating GFR in the every hospital.

A Study of Quality Control of Nuclear Medicine Counting System and Gamma Camera (핵의학 계측기기 및 감마카메라의 정도관리 연구)

  • 손혜경;김희중;정해조;정하규;이종두;유형식
    • Progress in Medical Physics
    • /
    • v.12 no.2
    • /
    • pp.103-112
    • /
    • 2001
  • Purpose: The purpose of this study was to investigate the current status of performing nuclear medicine quality control in korea and to test selected protocols of quality control of nuclear medicine counting system and gamma camera. Materials and Methods: Fifty three hospitals were included to investigate the current status of nuclear medicine quality control in korea. The precision of dose calibrator and thyroid uptake system was measured with Tc-99m 35.52 MBq for 2 minuets and Tc-99m 5.14 MBq for 10 sec every one minute, respectively. The sensitivity of CeraSPECT$^{TM}$ with low energy high resolution parallel hole collimator was measured using two cylindrical phantoms with 15 cm in diameter and 12 cm and 30 cm in heights containing Tc-99m. The correction factor for sensitivity of CeraSPECT$^{TM}$ was calculated using phantom data. The system planar sensitivity, uniformity, count rate and spatial resolution were measured for Varicam gamma camera with low energy high resolution parallel hole collimator using 140 keV centered 20% energy window, 256$\times$256 or 512$\times$512 matrix sizes. Results: The quality control of dose calibrator and well counter were showed poor performance status. On the other hand, The quality control of gamma camera and other systems were showed relatively good performance status. The results of precision of dose calibrator and thyroid uptake system was $\pm$1.4%(<$\pm$5%) and chi^2=29.7(>16.92), respectively. It showed that the sensitivity of CeraSPECT$^{TM}$ was higher in center slices compared with the edge slices. After correction of nonuniform sensitivities for patient data, it showed better results compare with prior to correction. System planar sensitivity of Varicam gamma camera was 4.39 CPM/MBq. The observed count rate at 20% loss was 102,407 counts/sec (head 1), 113,427 counts/sec (head 2), when input count rate was 81,926 counts/sec (head 1), 90,741 counts/sec (head 2). The spatial resolution without scatter medium were 8.16 mm of FWHM and 14.85 mm of FWTM. The spatial resolution with scatter medium were 8.87 mm of FWHM and 18.87 mm of FWTM. Conclusion: It is necessary to understand the importance of quality control and to perform quality control of nuclear medicine devices.vices.

  • PDF

Radioimmunoscintigraphy Using IMACIS-1 in Gastrointestinal Cancer (IMACIS-1을 이용한 위장관 종양의 방사면역신티그램)

  • Sohn, Hyung-Sun;Kim, Choon-Yul;Bahk, Yong-Whee
    • The Korean Journal of Nuclear Medicine
    • /
    • v.24 no.1
    • /
    • pp.29-36
    • /
    • 1990
  • Most of the diagnostic methods currently used for the detection of neoplastic masses provide indirect evidence. To obtain greater specificity in the interpretation of neoplasias by in vivo methods, the immunological approach appears to be most promising. Two problems that interfered with progress in this field were the lack of tumor specific antigen and the lack of well-defined and reproducible antibodies. To improve the sensitivity and specificity of radioimmunoscintigraphy as a technique for tumor localization, the use of monoclonal antibodies, fragments of antibodies and single photon emission computerized tomography (SPECT) are reasonable. The obvious advantages of monoclonal antibodies are their homogeneity, their specificity for the immunizing antigen and the reaction with a single determinant-thus no large immunecomplexes with antigen are formed. Monoclonal antibody technique has recently provided an opportunity to reevaluate the role of nuclear medicine for the diagnosis of malignant diseases by using the immunological approach. Out first results by means of radioimmunoscintigraphy of CEA and CA 19-9 producing tumors using a cocktail of fragments F $(ab')_2$, of mocolonal antibodies to CA 19-9 and CEA labeled with $^{131}I$ (IMACIS-1) are reported. The aims of this investigation was to evaluate the role of immunoscintigraphy in patients with colorectal and other cancers for diagnosis of local recurrences and metastasis. This report contains results of the first 8 colorectal and pancreas cancer patients with the elevation of the level of serum CEA and/or CA 19-9. IMACIS-1 was injected intravenously during 30 minutes in 100 ml saline solution after skin test. Planar scintigrams were recorded 3, 5 and 7 days after the injection of the IMACIS-1. Anterior, lateral and posterior views of the liver as well as anterior and posterior views of the pelvis were obtained in each patients as an $^{131}I-antibody$ image. We were able to localize exactly the malignant process with the double-nuclide double-compound $^{99m}Tc\;^{131}I$ (Tc+l) scintigrams. In Tc & I double-nuclide scintigraphy, computer subtraction display provided more clear localization of the tumor. We compared the results of radioimmunoscintigraphy with CT, ultrasonograms, conventional scintigrams. The results were as follows: 1) The sensitivity and specificity of radioimmunoscintigraphy using the fragments $F(ab')_2$ of the cocktails of CEA and CA 19-9 monoclonal antibodies were 80% and 100% respectively. 2) Tumor detection rate was not proportionated to the level of serum tumor markets. 3) Second tracer technique was essential for tumor localization as an anatomic landmark using double-nuclide scintigraphy. 4) A slow infusion of the antibodies was necessary to prevent the formation of large immune complexes. 5) Tumor/non-tumor radioactivity was most elevated at 7 days delayed imaging. 6) Using planar scintigraphic technique of $^{131}I$ labeled monoclonal antibodies are possible for imaging most of the tumors.

  • PDF

The Role of Gastrokine 1 in Gastric Cancer

  • Yoon, Jung Hwan;Choi, Won Suk;Kim, Olga;Park, Won Sang
    • Journal of Gastric Cancer
    • /
    • v.14 no.3
    • /
    • pp.147-155
    • /
    • 2014
  • Homeostatic imbalance between cell proliferation and death in gastric mucosal epithelia may lead to gastritis and gastric cancer. Despite abundant gastrokine 1 (GKN1) expression in the normal stomach, the loss of GKN1 expression is frequently detected in gastric mucosa infected with Helicobacter pylori, as well as in intestinal metaplasia and gastric cancer tissues, suggesting that GKN1 plays an important role in gastric mucosal defense, and the gene functions as a gastric tumor suppressor. In the stomach, GKN1 is involved in gastric mucosal inflammation by regulating cytokine production, the nuclear factor-${\kappa}B$ signaling pathway, and cyclooxygenase-2 expression. GKN1 also inhibits the carcinogenic potential of H. pylori protein CagA by binding to it, and up-regulates antioxidant enzymes. In addition, GKN1 reduces cell viability, proliferation, and colony formation by inhibiting cell cycle progression and epigenetic modification by down-regulating the expression levels of DNMT1 and EZH2, and DNMT1 activity, and inducing apoptosis through the death receptor-dependent pathway. Furthermore, GKN1 also inhibits gastric cancer cell invasion and metastasis via coordinated regulation of epithelial mesenchymal transition-related protein expression, reactive oxygen species production, and PI3K/Akt signaling pathway activation. Although the modes of action of GKN1 have not been clearly described, recent limited evidence suggests that GKN1 acts as a gastricspecific tumor suppressor. This review aims to discuss, comment, and summarize the recent progress in the understanding of the role of GKN1 in gastric cancer development and progression.

Image Evaluation Via $SUV_{LBM}$ for Normal Regions of VOI by Using Whole Body Images Obtained from PET/MRI and PET/CT (F-18 FDG PET/MRI와 PET/CT 전신 영상에서 VOI를 이용한 정상부위의 $SUV_{LBM}$-최대치에 의한 영상평가)

  • Park, Jeong-Kyu;Kim, Sung-Kyu;Cho, Ihn-Ho;Kong, Eun-Jung;Park, Meyong-Hwan
    • Progress in Medical Physics
    • /
    • v.24 no.1
    • /
    • pp.68-75
    • /
    • 2013
  • The purpose of this research is to compare and analyze $SUV_{LBM}$-maximum of normal regions using VOI (the volume of interest) in order to enhance the diagnostic level in whole body images of PET/CT and PET/MRI for 26 health check-up participants. In particular, we try to set up $SUV_{LBM}$-maximum data that can be used in synchronous evaluation for PET/CT and PET/MRI without contrast media. The evaluation of $SUV_{LBM}$-maximum for normal regions of whole body PET/CT and whole body PET/MRI shows that the image of PET/MRI differs very significantly from the reference image of PET/CT (p<0.0001). However, they exhibit high correlations in view of statistics (R>0.8). From this research, we suggest that the decision in the evaluation of $SUV_{LBM}$-maximum for PET/MRI should be made with the reduction of about 26.3%, while one should decide with the reduction of about 29.3% when the contrast media is used. It is helpful to interpret all image of PET/CT and PET/MRI using $SUV_{LBM}$-maximum for convenience and efficiency.

Comparison of Radioactivity Measurement with Radionuclide Calibrators in Nuclear Medicine Centers (의료용 방사능측정기의 측정 정확도 평가)

  • Son, Hye-Kyung;Kim, Ji-Hye;Lim, Chun-Il;Yang, Hyun-Kyu;Park, Ki-Jung;Oh, Heon-Jin;Kim, Hyeog-Ju;Kim, Dong-Sup
    • Progress in Medical Physics
    • /
    • v.21 no.1
    • /
    • pp.16-21
    • /
    • 2010
  • To acquire good image quality and to minimize unnecessary radiation dose to patients, it is important to ensure that the radiopharmaceutical administered is accurately measured. Quality control of radionuclide calibrators should be performed to achieve these goals. The purpose of this study is to support the quality control of radionuclide calibrators in nuclear medicine centers and to investigate the level of measurement accuracy of the radionuclide calibrators. 58 radionuclide calibrators from 45 nuclear medicine centers, 74 radionuclide calibrators from 58 nuclear medicine centers, and 60 radionuclide calibrators from 45 nuclear medicine centers were tested with I-131, Tc-99m and I-123, respectively. The results showed that 81% of calibrators for I-131, 61% of calibrators for Tc-99m and 67% of calibrators for I-123 were within ${\pm}5%$. 17% of calibrators for I-131, 20% of calibrators for Tc-99m and 15% of calibrators for I-123 had a deviation in the range 5%< $|{\Delta}|{\leq}10%$. 2% of calibrators for I-131, 19% of calibrators for Tc-99m and 18% of calibrators for I-123 had a deviation of $|{\Delta}|$ >10%. Follow-up measurements were performed on the calibrators whose error exceeded the ${\pm}10%$ limit. As a result, some of the calibrator showed an improvement and their deviation decreased below the ${\pm}10%$ limit. The results have shown that such comparisons are necessary to improve the accuracy of the measurement and to identify malfunctioning radionuclide calibrators.