• Title/Summary/Keyword: Programmable Graphics Pipeline

Search Result 12, Processing Time 0.018 seconds

Interactive Colision Detection for Deformable Models using Streaming AABBs

  • Zhang, Xinyu;Kim, Young-J.
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02c
    • /
    • pp.306-317
    • /
    • 2007
  • We present an interactive and accurate collision detection algorithm for deformable, polygonal objects based on the streaming computational model. Our algorithm can detect all possible pairwise primitive-level intersections between two severely deforming models at highly interactive rates. In our streaming computational model, we consider a set of axis aligned bounding boxes (AABBs) that bound each of the given deformable objects as an input stream and perform massively-parallel pairwise, overlapping tests onto the incoming streams. As a result, we are able to prevent performance stalls in the streaming pipeline that can be caused by expensive indexing mechanism required by bounding volume hierarchy-based streaming algorithms. At run-time, as the underlying models deform over time, we employ a novel, streaming algorithm to update the geometric changes in the AABB streams. Moreover, in order to get only the computed result (i.e., collision results between AABBs) without reading back the entire output streams, we propose a streaming en/decoding strategy that can be performed in a hierarchical fashion. After determining overlapped AABBs, we perform a primitive-level (e.g., triangle) intersection checking on a serial computational model such as CPUs. We implemented the entire pipeline of our algorithm using off-the-shelf graphics processors (GPUs), such as nVIDIA GeForce 7800 GTX, for streaming computations, and Intel Dual Core 3.4G processors for serial computations. We benchmarked our algorithm with different models of varying complexities, ranging from 15K up to 50K triangles, under various deformation motions, and the timings were obtained as 30~100 FPS depending on the complexity of models and their relative configurations. Finally, we made comparisons with a well-known GPU-based collision detection algorithm, CULLIDE [4] and observed about three times performance improvement over the earlier approach. We also made comparisons with a SW-based AABB culling algorithm [2] and observed about two times improvement.

  • PDF

GPU-accelerated Global Illumination for Point Set Rendering (GPU 가속을 이용한 점집합 렌더링을 위한 전역 조명기법)

  • Min, Heajung;Kim, Young J.
    • Journal of the Korea Computer Graphics Society
    • /
    • v.26 no.1
    • /
    • pp.7-15
    • /
    • 2020
  • In the process of visualizing a point set representing a smooth manifold surface, global illumination techniques can be used to render a realistic scene with various effects of lighting. Thanks to the continuous demand for ray tracing and the development of graphics hardware, dedicated GPUs and programmable pipeline for ray tracing have been introduced in recent years. In this paper, real-time global illumination rendering is studied for a point-set model using ray-tracing GPUs. We apply the moving least-squares (MLS) method to approximate the point set to a smooth implicit surface and render it using global illumination by performing massive ray-intersection tests with the surface and generating shading effects at the intersection point. As a result, a complicated point-set scene consisting of more than 0.5M points can be generated in real-time.