• Title/Summary/Keyword: Programmable Graphics Pipeline

Search Result 12, Processing Time 0.026 seconds

A Fully Programmable Shader Processor for Low Power Mobile Devices (저전력 모바일 장치를 위한 완전 프로그램 가능형 쉐이더 프로세서)

  • Jeong, Hyung-Ki;Lee, Joo-Sock;Park, Tae-Ryong;Lee, Kwang-Yeob
    • Journal of IKEEE
    • /
    • v.13 no.2
    • /
    • pp.253-259
    • /
    • 2009
  • In this paper, we propose a novel architecture of a general graphics shader processor without a dedicated hardware. Recently, mobile devices require the high performance graphics processor as well as the small size, low power. The proposed shader processor is a GP-GPU(General-Purpose computing on Graphics Processing Units) to execute the whole OpenGL ES 2.0 graphics pipeline by using shader instructions. It does not require the separate dedicate H/W such as rasterization on this fully programmable capability. The fully programmable 3D graphics shader processor can reduce much of the graphics hardware. The chip size of the designed shader processor is reduced 60% less than the sizes of previous processors.

  • PDF

A Design of Programmable Fragment Shader with Reduction of Memory Transfer Time (메모리 전송 효율을 개선한 programmable Fragment 쉐이더 설계)

  • Park, Tae-Ryoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.12
    • /
    • pp.2675-2680
    • /
    • 2010
  • Computation steps for 3D graphic processing consist of two stages - fixed operation stage and programming required stage. Using this characteristic of 3D pipeline, a hybrid structure between graphics hardware designed by fixed structure and programmable hardware based on instructions, can handle graphic processing more efficiently. In this paper, fragment Shader is designed under this hybrid structure. It also supports OpenGL ES 2.0. Interior interface is optimized to reduce the delay of entire pipeline, which may be occurred by data I/O between the fixed hardware and the Shader. Interior register group of the Shader is designed by an interleaved structure to improve the register space and processing speed.

Numerical Computing on Graphics Hardware

  • 임인성
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.04a
    • /
    • pp.57-63
    • /
    • 2004
  • 최근 일반 범용 PC 에 장착되고 있는 ATI 나 NVIDIA 등의 그래픽스 가속기의 성능은 수년전과 비교할 때 비교가 안 될 정도의 빠른 속도를 자랑하고 있다. 이러한 속도 향상과 함께 급격하게 일어나고 있는 변화 중의 하나는 바로 기존의 고정된 기능의 그래픽스 파이프라인(fixed-function graphics pipeline)과는 달리 프로그래머가 가속기의 기능을 자유자재로 프로그래밍할 수 있도록 해주는 프로그래밍이 가능한 파이프라인(programmable graphics pipeline)의 출현이라 할 수 있다. 이러한 가속기에 장착되고 있는 GPU (Graphics Processing Unit)는 간단한 형태의 SIMD 프로세서라 할 수 있는데, 특히 GPU 의 한 부분인 픽셀 쉐이더는 그 처리 속도가 매우 높기 때문에 이를 통하여 기존의 수치 알고리즘을 병렬화 하려는 시도가 활발히 일어나고 있다. 본 강연에서는 다양한 수치 계산을 그래픽스 가속기를 사용하여 해결하려는 시도에 대하여 간단히 살펴본다.

  • PDF

An Architecture of a high efficient ALU for 3D Graphics Shader Processor (3D 그래픽 쉐이더 프로세서를 위한 고효율 연산기 구조)

  • Kim, Woo-Young;Lee, Bo-Haeng;Lee, Kwang-Yeob;Park, Tae-ryung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.229-232
    • /
    • 2009
  • In this paper, we propose a new programmable shader architecture based on an effective ALU operation. Today's mobile devices need the programmable shader processor for a three-dimensional(3D) graphics. The programmable shader processors require a lager ALU than a fixed pipeline ALU used previously. The proposed ALU architecture is able to execute two different arithmetic operations at the same time. Two instructions which need exclusive ALU operations are inserted into instruction decoders in parallel. Experimental results show the number of instruction cycles can be substantially reduced up to 40%.

  • PDF

GPU-based Rendering of Blending Surfaces (블렌딩 곡면의 GPU 기반 렌더링)

  • Ko, Dae-Hyun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.13 no.1
    • /
    • pp.1-6
    • /
    • 2007
  • Although free-form surfaces can represent smooth shapes with only a few control points contrary to polygonal meshes, graphics hardware does not support surface rendering currently. Since modern programmable graphics pipeline can be used to accelerate various kinds of existing graphics algorithms, this paper presents a method that utilizes the graphics processing unit (GPU) to render blending surfaces with arbitrary topology fast. Surface parameters sampled on the control mesh and geometric data for local surfaces are sent to the graphics pipeline, and then the vertex processor evaluates the surface positions and normals with these data. This method can achieve very high performance rather than CPU-based rendering.

  • PDF

Photomosaic using a programmable GPU (프로그래밍 가능한 GPU를 이용한 포토 모자이크)

  • Kang, Dong-Wann;Yoon, Kyung-Hyun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.14 no.1
    • /
    • pp.17-25
    • /
    • 2008
  • We proposed the method for photomosaic generation using a programmable GPU. We design vertices to generate a photomosaic through a graphics pipeline and suggest a texture representation of an image database whice is used for tile. Both the source image and the tiles are stored to texture, which are matched by a vertex shader and drawn by a fragment shader. This is much faster than several techniques which achieve the best match for each tile.

  • PDF

Extracting Graphics Information for Better Video Compression

  • Hong, Kang Woon;Ryu, Won;Choi, Jun Kyun;Lim, Choong-Gyoo
    • ETRI Journal
    • /
    • v.37 no.4
    • /
    • pp.743-751
    • /
    • 2015
  • Cloud gaming services are heavily dependent on the efficiency of real-time video streaming technology owing to the limited bandwidths of wire or wireless networks through which consecutive frame images are delivered to gamers. Video compression algorithms typically take advantage of similarities among video frame images or in a single video frame image. This paper presents a method for computing and extracting both graphics information and an object's boundary from consecutive frame images of a game application. The method will allow video compression algorithms to determine the positions and sizes of similar image blocks, which in turn, will help achieve better video compression ratios. The proposed method can be easily implemented using function call interception, a programmable graphics pipeline, and off-screen rendering. It is implemented using the most widely used Direct3D API and applied to a well-known sample application to verify its feasibility and analyze its performance. The proposed method computes various kinds of graphics information with minimal overhead.

Key-Frame Based Real-Time Fluid Simulations (키-프레임 기반 실시간 유체 시뮬레이션)

  • Ryu, Ji-Hyun;Park, Sang-Hun
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.11
    • /
    • pp.1515-1528
    • /
    • 2006
  • Systems for physically based fluid animation have developed rapidly in the visual special effects industry and can make very high quality images. However, in the real-time application fields such as computer game, the simulation speed is more critical issue than image quality. This paper presents a real-time method for animating fluid using programmable graphics pipeline. We show that once two key-frames are given, the technique can interactively generate a sequence of images changing from the source key-frame to the target.

  • PDF

DMGL: An OpenGL ES Based Mobile 3D Rendering Libraries (DMGL: OpenGL ES 기반 모바일 3D 렌더링 라이브러리)

  • Hwang, Gyu-Hyun;Park, Sang-Hun
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.8
    • /
    • pp.1160-1168
    • /
    • 2008
  • Recent technological innovations of mobile hardware which make it possible to implement real-time 3D rendering effects under mobile environment have provided a potential to develop realistic mobile application programs. This paper presents platform independent, OpenGL ES based, real-time mobile rendering libraries, called DMGL for supporting high quality 3D rendering on handhold devices. The libraries allows the programmers who develops mobile graphics softwares to generate varying advanced real-time 3D graphics effects without great effort. Moreover, GPGPU-based libraries give a set of functions to solve complex equations for simulating natural phenomena such as smoke and fire, and to render the results in real-time.

  • PDF

Quadtree-based Terrain Visualization Using Vertex Multiplication (정점증식을 이용한 사진트리 기반 지형 시각화 기법)

  • Lee, Eun-Seok;Shin, Byeong-Seok
    • Journal of the Korea Computer Graphics Society
    • /
    • v.15 no.3
    • /
    • pp.27-33
    • /
    • 2009
  • In terrain visualization, the quadtree is the most frequently used data structure for progressive mesh generation. The quadtree provides an efficient level-of-detail selection and view frustum culling. However, most applications using quadtrees are performed by the CPU, since the hierarchical data structure cannot be manipulated in a programmable rendering pipeline. For this reason, quadtree-based methods show lower performance and higher dependancy of CPU in comparison to GPU-based methods. We present a quadtree-based terrain-rendering method for GPU execution that uses vertex multiplication. It offers higher performance than previous CPU-based quadtree methods, without loss of image quality.

  • PDF