• Title/Summary/Keyword: Program Simulation

Search Result 4,551, Processing Time 0.03 seconds

Nuclear Fuel Cycle Analysis Technology to Develop Advanced Nuclear Fuel Cycle (선진 핵연료주기 기술 개발을 위한 핵연료주기 분석 기술)

  • Park, Byung-Heung;Ko, Won-Il
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.4
    • /
    • pp.219-230
    • /
    • 2011
  • The nuclear fuel cycle (NFC) analysis is a study to set a NFC policy and to promote systematic researches by analyzing technologies and deriving requirements at each stage of a fuel cycle. System analysis techniques are utilized for comparative analysis and assessment of options on a considered system. In case that NFC is taken into consideration various methods of the system analysis techniques could be applied depending on the range of an interest. This study presented NFC analysis strategies for the development of a domestic advanced NFC and analysis techniques applicable to different phases of the analysis. Strategically, NFC analysis necessitates the linkage with technology analyses, domestic and international interests, and a national energy program. In this respect, a trade-off study is readily applicable since it includes various aspects on NFC as metrics and then analyzes the considered NFC options according to the derived metrics. In this study, the trade-off study was identified as a method for NFC analysis with the derived strategies and it was expected to be used for development of an advanced NFC. A technology readiness level (TRL) method and NFC simulation codes could be utilized to obtain the required metrics and data for assessment in the trade-off study. The methodologies would guide a direction of technology development by comparing and assessing technological, economical, environmental, and other aspects on the alternatives. Consequently, they would contribute for systematic development and deployment of an appropriate advanced NFC.

Development of a Chinese cabbage model using Microsoft Excel/VBA (엑셀/VBA를 이용한 배추 모형 제작)

  • Moon, Kyung Hwan;Song, Eun Young;Wi, Seung Hwan;Oh, Sooja
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.2
    • /
    • pp.228-232
    • /
    • 2018
  • Process-based crop models have been used to assess the impact of climate change on crop production. These models are implemented in procedural or object oriented computer programming languages including FORTRAN, C++, Delphi, Java, which have a stiff learning curve. The requirement for a high level of computer programming is one of barriers for efforts to develop and improve crop models based on biophysical process. In this study, we attempted to develop a Chinese cabbage model using Microsoft Excel with Visual Basic for Application (VBA), which would be easy enough for most agricultural scientists to develop a simple model for crop growth simulation. Results from Soil-Plant-Atmosphere-Research (SPAR) experiments under six temperature conditions were used to determine parameters of the Chinese cabbage model. During a plant growing season in SPAR chambers, numbers of leaves, leaf areas, growth rate of plants were measured six times. Leaf photosynthesis was also measured using LI-6400 Potable Photosynthesis System. Farquhar, von Caemmerer, and Berry (FvCB) model was used to simulate a leaf-level photosynthesis process. A sun/shade model was used to scale up to canopy-level photosynthesis. An Excel add-in, which is a small VBA program to assist crop modeling, was used to implement a Chinese cabbage model under the environment of Excel organizing all of equations into a single set of crop model. The model was able to simulate hourly changes in photosynthesis, growth rate, and other physiological variables using meteorological input data. Estimates and measurements of dry weight obtained from six SPAR chambers were linearly related ($R^2=0.985$). This result indicated that the Excel/VBA can be widely used for many crop scientists to develop crop models.

An Analysis on Signal Control Efficiency in a Three-Leg Intersection Adopting Pedestrian Push-Button System Following Pedestrian volume (3지 교차로에서 보행자 교통량에 따른 보행자작동신호기를 이용한 신호제어효율에 관한 분석)

  • Kim, Eung-Cheol;Cho, Han-Seon;Jung, Dong-Woo;Kim, Hyoung-Soo
    • International Journal of Highway Engineering
    • /
    • v.11 no.3
    • /
    • pp.121-128
    • /
    • 2009
  • This study has proposed the signal operating system to use both semi-actuated signal control and pedestrian push-button as a way to make up for the problems of 3 leg intersections which are operated inefficiently in the signal operation, one of the methods of traffic operations. In case of the semi-actuated signal control, it can reduce delay inside the intersection by serving to uncongested traffic on the main road where there is not much traffic volume on the secondary road and push-button signal can reduce unnecessary waiting time it could happen to vehicles by operating it though there is no pedestrian. Quantitative analysis was tried regarding the average delay reduction per vehicle using VISSIM, microscopic simulation program regarding how much effect it has compared with the existing signal control system and semi-actuated signal control system when the above two advantages are collected. The field test was performed for one three-leg intersection of Incheon. According to respectively signal control method pedestrian traffic changed and executed a sensitivity analysis. The result which compares the average delay time per a vehicle of scenarios, the signal control method of using the pedestrian push-button system in comparison with the fixed signal control method showed to decrease effect of a minimum 3.7 second (10%), a maximum 5.8 second (16%). When the pedestrian traffic volume was 20% or less of the measurement traffic volume, The signal control method of using the pedestrian push-button system appeared to be more efficient the semi-actuated signal control with object intersection.

  • PDF

A SYSTEM DYNAMICS MODEL OF FOOD GRAIN PRODUCTION IN KOREA (양곡생산(糧穀生産)의 동적(動的) 모델에 관(關)한 연구(硏究))

  • Lee, Chong Ho
    • Journal of Biosystems Engineering
    • /
    • v.8 no.1
    • /
    • pp.61-69
    • /
    • 1983
  • A system dynamic model was developed to predict food grain production under the dynamic consideration of the production circumstance and inputs such as farm population, investment on agriculture, arable land, extensive technology and weather. By using the model, the variation of the food grain production from 1978 to 2008 was examined. The results of the model output says it is desirable that the persistent and long-term program should be studied to get necessary food grain production under the variational inputs and circumstances.

  • PDF

Numerical Analysis on Wave Characteristics around Submerged Breakwater in Wave and Current Coexisting Field by OLAFOAM (파-흐름 공존장내 잠제 주변에서 OLAFOAM에 의한 파랑특성의 수치해석)

  • Lee, Kwang-Ho;Bae, Ju-Hyun;An, Sung-Wook;Kim, Do-Sam;Bae, Kee Seung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.6
    • /
    • pp.332-349
    • /
    • 2016
  • OLAFOAM is the powerful CFD code and is an expanded version of $OpenFOAM^{(R)}$, for wave mechanics simulation. The $OpenFOAM^{(R)}$ does provide many solvers to correspond to each object of the numerical calculation in a variety of fields. OLAFOAM's governing equation bases on VARANS (Volume-Averaged Reynolds-Averaged Navier-Stokes) equation, and the finite volume method is applied to numerical techniques. The program is coded in C++ and run on the Linux operating system. First of all, in this study, OLAFOAM was validated for 1) wave transformation inside porous structure under bore and regular wave conditions, 2) wave transformation by submerged breakwater under regular wave condition, and 3) regular wave transformation and resultant vertical velocity distribution under current by comparison with existing laboratory measurements. Hereafter, this study, which is almost no examination carried out until now, analyzed closely variation characteristics of water surface level, wave height, frequency spectrum, breaking waves, averaged velocity and turbulent kinetic energy around porous submerged breakwater in the wave and current coexisting field for the case of permeable or impermeable rear beach. It was revealed that the wave height fluctuation according to current direction(following or opposing) was closely related to the turbulent kinetic energy, and others.

Image Conversion in Digital Design (디지털디자인에서 이미지의 變換)

  • Kim, Hun
    • Archives of design research
    • /
    • v.15 no.1
    • /
    • pp.309-318
    • /
    • 2002
  • An expression of image in visual communication design traditionally has a dose relationship with the mechanical part of several expression media. Especially, an image conversion becomes easter by converging various forms of image such as a pictorial expression, a drawing up a plan, an optical expression and a reflected image into digital data in the image expression using digital mode. In addition, synthesis between various forms of visual ,images is activated by the integration of all expression media into digital mode and thus the extent of the image expression becomes diversified. Moreover, there is a tendency that a various dimensional expression such as 3D and 4D is generalized in the image expression of digital design. A partial or whole image conversion has often occurred during the generalization process of several image forms. Such conversion summarized into two factors, a formative side and a technical side. We described the existing pictorial expression as a formative side, an optical expression as a photography, a materialization of image conversion theory of computer graphic image conversion according to data form as a technical side and specific content according to dimension. We summarized objective and demonstrative resets through a simple simulation using a computer for the contents required a technical and qualitative measure and presented an application program of the particular results from the study to the visual communication design work by a case.

  • PDF

Analysis of Temperature Characteristics on Accelerometer using SOI Structure (SOI 구조 가속도센서의 온도 특성 해석)

  • Son, Mi-Jung;Seo, Hee-Don
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.1-8
    • /
    • 2000
  • One of today's very critical and sensitive accurate accelerometer which can be used higher temperature than $200^{\circ}C$ and corrosive environment, is particularly demanded for automotive engine. Because silicon is a material of large temperature dependent coefficient, and the piezoresistors are isolated with p-n junctions, and its leakage current increase with temperature, the performance of the silicon accelerometer degrades especially after $150^{\circ}C$. In this paper, The temperature characteristic of a accelerometer using silicon on insulator (SOI) structure is studied theoretically, and compared with experimental results. The temperature coefficients of sensitivity and offset voltage (TCS and TCO) are related to some factors such as thermal residual stress, and are expressed numerically. Thermal stress analysis of the accelerometer has also been carried out with the finite-element method(FEM) simulation program ANSYS. TCS of this accelerometer can be reduced to control the impurity concentration of piezoresistors, and TCO is related to factors such as process variation and thermal residual stress on the piezoresistors. In real packaging, The avarage thermal residual stress in the center support structure was estimated at around $3.7{\times}10^4Nm^{-2}^{\circ}C^{-1}$ at sensing resistor. The simulated ${\gamma}_{pT}$ of the center support structure was smaller than one-tenth as compared with that of the surrounding support structure.

  • PDF

Effect of Current Density on Nickel Surface Treatment Process (니켈 표면처리공정에서 전류밀도 효과분석)

  • Kim, Yong-Woon;Joeng, Koo-Hyung;Hong, In-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.19 no.2
    • /
    • pp.228-235
    • /
    • 2008
  • Nickel plating thickness increased with the electric current density, and the augmentation was more thick in $6{\sim}10A/dm^2$ than low current. Hull-cell analysis was tested to evaluate the current density. Optimum thickness was obtained at a temperature of $60^{\circ}C$, and the pH fluctuation of 3.5~4.0. Over the Nickel ion concentration of 300 g/L, plating thickness increased with the current density. The rate of decrease in nickel ion concentration was increased with the current density. The quantity of plating electro-deposition was increased at the anode surface, which was correlated with the increase of plating thickness. The plating thickness was increased because of the quick plating speed. However, the condition of the plating surface becomes irregular and the minuteness of nickel plating layer was reduced with the plating rate. After the corrosion test of 25 h, it was resulted in that maintaining low electric current density is desirable for the excellent corrosion resistance in lustered nickel plating. According to the program simulation, the thickness of diffusion layer was increased and the concentration of anode surface was lowered for the higher current densities. The concentration profile showed the regular distribution at low electric current density. The field plating process was controlled by the electric current density and the plating thickness instead of plating time for the productivity. The surface physical property of plating structure or corrosion resistance was excellent in the case of low electric current density.

Application Analysis of GIS Based Distributed Model Using Radar Rainfall (레이더강우를 이용한 GIS기반의 분포형모형 적용성 분석)

  • Park, Jin-Hyeog;Kang, Boo-Sik;Lee, Geun-Sang
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.16 no.1
    • /
    • pp.23-32
    • /
    • 2008
  • According to recent frequent local flash flood due to climate change, the very short-term rainfall forecast using remotely sensed rainfall like radar is necessary to establish. This research is to evaluate the feasibility of GIS-based distributed model coupled with radar rainfall, which can express temporal and spatial distribution, for multipurpose dam operation during flood season. $Vflo^{TM}$ model was used as physically based distributed hydrologic model. The study area was Yongdam dam basin ($930\;km^2$) and the 3 storm events of local convective rainfall in August 2005, and the typhoon.Ewiniar.and.Bilis.collected from Jindo radar was adopted for runoff simulation. Distributed rainfall consistent with hydrologic model grid resolution was generated by using K-RainVieux, pre-processor program for radar rainfall. The local bias correction for original radar rainfall shows reasonable results of which the percent error from the gauge observation is less than 2% and the bias value is $0.886{\sim}0.908$. The parameters for the $Vflo^{TM}$ were estimated from basic GIS data such as DEM, land cover and soil map. As a result of the 3 events of multiple peak hydrographs, the bias of total accumulated runoff and peak flow is less than 20%, which can provide a reasonable base for building operational real-time short-term rainfall-runoff forecast system.

  • PDF

A Study on the Film-Formation Mechanism by Ionized Cluster Beam Deposition (이온화 클러스터 빔 증착의 박막 형성 기구에 관한 연구)

  • Shin, C.B.;Lee, K.H.;Hwang, G.S.;Moon, S.H.;Cho, W.I.;Yun, K.S.
    • Applied Chemistry for Engineering
    • /
    • v.7 no.3
    • /
    • pp.464-472
    • /
    • 1996
  • The mechanism of thin-film formation by Ionized Cluster Beam Deposition(ICBD) was investigated. A simulation program based on the Monte-Carlo method was developed in order to investigate the effects of the acceleration voltage, substrate temperature, activation energy for the surface migration, and critical nuclei size on grain size and surface roughness. Studies of the effect of kinetic energy of clusters on the film formation processes revealed that high acceleration voltage enhanced the surface-migration of adatoms and made it easier for an epitaxial film to be formed. The relaxation time of kinetic energy of adatoms increased with the substrate temperature, which in turn increased the grain size of the crystalline film. This effect was more clearly distinguished when the critical nuclei size was large. The surface-migration activation energy was found to affect the interaction between the adatoms and the substrate and thus the relaxation time of kinetic energy. Investigations of the surface roughness revealed that the acceleration voltage, the substrate temperature, and the surface-migration activation energy exerted a collective effect on the morphology of the film surface.

  • PDF