• Title/Summary/Keyword: Prognostics and Health Management

Search Result 55, Processing Time 0.023 seconds

Remaining Useful Life Prediction of Li-Ion Battery Based on Charge Voltage Characteristics (충전 전압 특성을 이용한 리튬 이온 배터리의 잔존 수명 예측)

  • Sim, Seong Heum;Gang, Jin Hyuk;An, Dawn;Kim, Sun Il;Kim, Jin Young;Choi, Joo Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.4
    • /
    • pp.313-322
    • /
    • 2013
  • Batteries, which are being used as energy sources in various applications, tend to degrade, and their capacity declines with repeated charging and discharging cycles. A battery is considered to fail when it reaches 80% of its initial capacity. To predict this, prognosis techniques are attracting attention in recent years in the battery community. In this study, a method is proposed for estimating the battery health and predicting its remaining useful life (RUL) based on the slope of the charge voltage curve. During this process, a Bayesian framework is employed to manage various uncertainties, and a Particle Filter (PF) algorithm is applied to estimate the degradation of the model parameters and to predict the RUL in the form of a probability distribution. Two sets of test data-one from the NASA Ames Research Center and another from our own experiment-for an Li-ion battery are used for illustrating this technique. As a result of the study, it is concluded that the slope can be a good indicator of the battery health and PF is a useful tool for the reliable prediction of RUL.

The Fault Diagnosis Model of Ship Fuel System Equipment Reflecting Time Dependency in Conv1D Algorithm Based on the Convolution Network (합성곱 네트워크 기반의 Conv1D 알고리즘에서 시간 종속성을 반영한 선박 연료계통 장비의 고장 진단 모델)

  • Kim, Hyung-Jin;Kim, Kwang-Sik;Hwang, Se-Yun;Lee, Jang Hyun
    • Journal of Navigation and Port Research
    • /
    • v.46 no.4
    • /
    • pp.367-374
    • /
    • 2022
  • The purpose of this study was to propose a deep learning algorithm that applies to the fault diagnosis of fuel pumps and purifiers of autonomous ships. A deep learning algorithm reflecting the time dependence of the measured signal was configured, and the failure pattern was trained using the vibration signal, measured in the equipment's regular operation and failure state. Considering the sequential time-dependence of deterioration implied in the vibration signal, this study adopts Conv1D with sliding window computation for fault detection. The time dependence was also reflected, by transferring the measured signal from two-dimensional to three-dimensional. Additionally, the optimal values of the hyper-parameters of the Conv1D model were determined, using the grid search technique. Finally, the results show that the proposed data preprocessing method as well as the Conv1D model, can reflect the sequential dependency between the fault and its effect on the measured signal, and appropriately perform anomaly as well as failure detection, of the equipment chosen for application.

A Predictive Bearing Anomaly Detection Model Using the SWT-SVD Preprocessing Algorithm (SWT-SVD 전처리 알고리즘을 적용한 예측적 베어링 이상탐지 모델)

  • So-hyang Bak;Kwanghoon Pio Kim
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.109-121
    • /
    • 2024
  • In various manufacturing processes such as textiles and automobiles, when equipment breaks down or stops, the machines do not work, which leads to time and financial losses for the company. Therefore, it is important to detect equipment abnormalities in advance so that equipment failures can be predicted and repaired before they occur. Most equipment failures are caused by bearing failures, which are essential parts of equipment, and detection bearing anomaly is the essence of PHM(Prognostics and Health Management) research. In this paper, we propose a preprocessing algorithm called SWT-SVD, which analyzes vibration signals from bearings and apply it to an anomaly transformer, one of the time series anomaly detection model networks, to implement bearing anomaly detection model. Vibration signals from the bearing manufacturing process contain noise due to the real-time generation of sensor values. To reduce noise in vibration signals, we use the Stationary Wavelet Transform to extract frequency components and perform preprocessing to extract meaningful features through the Singular Value Decomposition algorithm. For experimental validation of the proposed SWT-SVD preprocessing method in the bearing anomaly detection model, we utilize the PHM-2012-Challenge dataset provided by the IEEE PHM Conference. The experimental results demonstrate significant performance with an accuracy of 0.98 and an F1-Score of 0.97. Additionally, to substantiate performance improvement, we conduct a comparative analysis with previous studies, confirming that the proposed preprocessing method outperforms previous preprocessing methods in terms of performance.

Gear Fault Diagnosis Based on Residual Patterns of Current and Vibration Data by Collaborative Robot's Motions Using LSTM (LSTM을 이용한 협동 로봇 동작별 전류 및 진동 데이터 잔차 패턴 기반 기어 결함진단)

  • Baek Ji Hoon;Yoo Dong Yeon;Lee Jung Won
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.10
    • /
    • pp.445-454
    • /
    • 2023
  • Recently, various fault diagnosis studies are being conducted utilizing data from collaborative robots. Existing studies performing fault diagnosis on collaborative robots use static data collected based on the assumed operation of predefined devices. Therefore, the fault diagnosis model has a limitation of increasing dependency on the learned data patterns. Additionally, there is a limitation in that a diagnosis reflecting the characteristics of collaborative robots operating with multiple joints could not be conducted due to experiments using a single motor. This paper proposes an LSTM diagnostic model that can overcome these two limitations. The proposed method selects representative normal patterns using the correlation analysis of vibration and current data in single-axis and multi-axis work environments, and generates residual patterns through differences from the normal representative patterns. An LSTM model that can perform gear wear diagnosis for each axis is created using the generated residual patterns as inputs. This fault diagnosis model can not only reduce the dependence on the model's learning data patterns through representative patterns for each operation, but also diagnose faults occurring during multi-axis operation. Finally, reflecting both internal and external data characteristics, the fault diagnosis performance was improved, showing a high diagnostic performance of 98.57%.

A Proposal of Remaining Useful Life Prediction Model for Turbofan Engine based on k-Nearest Neighbor (k-NN을 활용한 터보팬 엔진의 잔여 유효 수명 예측 모델 제안)

  • Kim, Jung-Tae;Seo, Yang-Woo;Lee, Seung-Sang;Kim, So-Jung;Kim, Yong-Geun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.611-620
    • /
    • 2021
  • The maintenance industry is mainly progressing based on condition-based maintenance after corrective maintenance and preventive maintenance. In condition-based maintenance, maintenance is performed at the optimum time based on the condition of equipment. In order to find the optimal maintenance point, it is important to accurately understand the condition of the equipment, especially the remaining useful life. Thus, using simulation data (C-MAPSS), a prediction model is proposed to predict the remaining useful life of a turbofan engine. For the modeling process, a C-MAPSS dataset was preprocessed, transformed, and predicted. Data pre-processing was performed through piecewise RUL, moving average filters, and standardization. The remaining useful life was predicted using principal component analysis and the k-NN method. In order to derive the optimal performance, the number of principal components and the number of neighbor data for the k-NN method were determined through 5-fold cross validation. The validity of the prediction results was analyzed through a scoring function while considering the usefulness of prior prediction and the incompatibility of post prediction. In addition, the usefulness of the RUL prediction model was proven through comparison with the prediction performance of other neural network-based algorithms.