국내 태양우주환경 분야에서 널리 이용되는 자료와 모델의 이해와 활용도를 높이고, 세부 분야 간 공동연구의 기회의 장을 마련하고자, 최근 한국우주과학회 태양우주환경분과에서 국내 연구소와 대학을 중심으로 사용되는 태양우주환경 자료와 모델의 보유 및 활용에 대한 조사를 실시했다. 조사 결과를 크게 태양 및 행성간 공간, 자기권, 전리권의 세 분야로 나눠 정리하였고, 본 논문에서는 자기권 분야의 관련 자료와 모델을 소개한다. 자기권 연구의 특성 상 우주공간에서 지점관측을 위한 위성 개발과 운용에 투자가 많이 필요하여 국내 보유 자료는 다른 분야에 비해 상대적으로 적은 편으로 조사됐지만, 국내 지자기관측소를 통한 자기장 변화를 실시간으로 제공하고 있으며, 자기권 모델을 통해 꾸준한 연구를 수행 중이다. 본 논문에서는 자기권 분야 중 국내 위성자료를 이용한 연구들과 제 1원리 물리법칙에 바탕이 된 모델을 대표로 소개한다. 이번 조사 결과와 이를 정리한 논문이 우주과학 관련 자료에 대한 장기적이고 연속적인 관리에 대한 중요성을 인식하며, 우주과학 연구에 참여하는 다양한 인력들이 참조하여 국내에서 생산되고 있는 자료를 활용하여 국내 우주과학 자료의 위상을 높이는데 기여하기를 희망한다. 자료에 대한 조사 내용은 한국우주과학회 홈페이지에서 다운로드할 수 있다(http://ksss.or.kr/).
한국 경제에 근간이 되는 산업은 제조업이고, 그중 석유화학산업은 전량 원유를 수입하여 우리나라의 기술력으로 가공하여 재수출하는 전략적 성장 산업이다. 수많은 제조업의 원료가 되는 원유를 전량 해상운송을 통해 수입하는 우리나라는 변동성이 심한 유조선 운임 시장에 대해 기민하게 대응해야 한다. 유조선 운임 시장의 위기는 관련 해운회사의 위기에서 끝나지 않고 원유를 사용하는 산업에서부터 국민의 생활까지 영향을 미칠 수 있으므로, 본 연구에서 신호접근법을 활용한 조기경보모형을 제시했다. BDTI 운임지수를 활용하여 유조선 해운시장 위기를 정의하고, 38개의 거시경제, 금융, 원자재 지표 그리고 해운시장 데이터를 활용해 시차상관관계를 분석하여 유조선 해운시장 위기에 선행적으로 반응하는 종합선행지수를 도출했다. 연구 결과, 종합선행지수는 두 달 전 가장 높은 0.499의 시차상관계수 값을 가졌으며, 5개월 전부터 유의미한 상관계수 값을 나타냈다. QPS 값은 0.13으로 위기 예측에 대해 높은 정확성을 지니는 것으로 검증됐다. 더불어 기존의 다른 시계열 예측모형 연구들과 달리 본 연구는 경제 위기와 유조선 해운시장의 위기 간의 시차를 계량적으로 접근하여, 관련 해운산업 종사자들과 정책 입안자들에게 위기에 효과적으로 대처할 수 있는 전략의 기틀을 제공함에 의의가 있다.
본 연구는 우리 경제에서 사회적기업의 역할이 증가함에 따라, 사회적기업의 부실에 영향을 미치는 요인을 분석하여 부실률을 낮추고 기업부실로 인한 사회적 비용을 감소하는데 도움이 되고자 한다. 본 연구에 사용된 데이터는 신용보증기관의 신용보증을 지원받고, 2009년부터 2018년 사이에 설립된 사회적 기업(예비 사회적기업 포함) 중에서 2022년 6월말 기준으로 정상기업과 부실기업으로 분류하였다. 수집된 사회적기업의 수는 재무정보 활용이 가능한 439개를 대상으로 하였으며, 정상기업은 406개(92.5%), 부실기업은 33개(7.5%)이다. 선행연구를 통하여 부실예측에 주로 사용하는 비재무적요인 8개를 선정하였다. 교차분석 결과 4개가 부실에 대하여 유의한 변수로 나타났고. 채택된 4개의 변수를 대상으로 로지스틱 회귀분석을 한 결과로 기업신용등급, 대표자개인신용등급 등 2개 변수가 부실에 유의한 변수로 채택되었다. 또한 부채비율, 매출액영업이익율, 총자산회전율 등 재무요인을 통제변수로 사용하여 분석을 수행하였다. 실증분석 결과, 사회적 기업의 부실에 영향을 미치는 독립 변수들이 재무적 요인을 통제한 상태에서 2개 변수가 영향력을 유지하고 있음이 확인되었다. 지금까지와 같은 정부 주도의 육성·지원 정책으로는 한계가 있어 민간·지역의 자발적인 주도로 다양한 사회적 가치를 지향하는 기업들이 사회적기업으로 유입되고 사회적경제 주체와 지역·주민이 함께 연대하여 사회적가치를 실현할 수 있는 환경을 조성하고 정부는 이를 적극적으로 지원할 수 있도록 정책의 방향을 전환할 필요가 있다.
주식 시장은 거래자들의 기업과 시황에 대한 기대가 반영되어 움직이기에, 다양한 원천의 텍스트 데이터 분석을 통해 주가 움직임을 예측하려는 연구들이 진행되어 왔다. 주가의 움직임을 예측하는 것이기에 단순히 주가의 등락 뿐만이 아니라, 뉴스 기사나 소셜 미디어의 반응에 따라 거래를 하고 이에 따른 수익률을 분석하는 연구들이 진행되어 왔다. 주가의 움직임을 예측하는 연구들도 다른 분야의 텍스트 마이닝 접근 방안과 동일하게 단어-문서 매트릭스를 구성하여 분류 알고리즘에 적용하여 왔다. 문서에 많은 단어들이 포함되어 있기 때문에 모든 단어를 가지고 단어-문서 매트릭스를 만드는 것보다는 단어가 문서를 범주로 분류할 때 기여도가 높은 단어들을 선정하여야 한다. 단어의 빈도를 고려하여 너무 적은 등장 빈도나 중요도를 보이는 단어는 제거하게 된다. 단어가 문서를 정확하게 분류하는 데 기여하는 정도를 측정하여 기여도에 따라 사용할 단어를 선정하기도 한다. 단어-문서 매트릭스를 구성하는 기본적인 방안인 분석의 대상이 되는 모든 문서를 수집하여 분류에 영향력을 미치는 단어를 선정하여 사용하는 것이었다. 본 연구에서는 개별 종목에 대한 문서를 분석하여 종목별 등락에 모두 포함되는 단어를 중립 단어로 선정한다. 선정된 중립 단어 주변에 등장하는 단어들을 추출하여 단어-문서 매트릭스 생성에 활용한다. 중립 단어 자체는 주가 움직임과 연관관계가 적고, 중립 단어의 주변 단어가 주가 상승에 더 영향을 미칠 것이라는 생각에서 출발한다. 생성된 단어-문서 매트릭스를 가지고 주가의 등락 여부를 분류하는 알고리즘에 적용하게 된다. 본 연구에서는 종목 별로 중립 단어를 1차 선정하고, 선정된 단어 중에서 다른 종목에도 많이 포함되는 단어는 추가적으로 제외하는 방안을 활용하였다. 온라인 뉴스 포털을 통해 시가 총액 상위 10개 종목에 대한 4개월 간의 뉴스 기사를 수집하였다. 3개월간의 뉴스 기사를 학습 데이터로 분류 모형을 수립하였으며, 남은 1개월간의 뉴스 기사를 모형에 적용하여 다음 날의 주가 움직임을 예측하였다. 본 연구에서 제안하는 중립 단어 활용 알고리즘이 희소성에 기반한 단어 선정 방안에 비해 우수한 분류 성과를 보였다.
세계에는 수많은 사람들이 살아가고 있고, 사람들의 일상으로부터 매일, 매 시간 단위로 새로운 뉴스가 발생한다. 발생되는 뉴스는 예정된 일과 예상하지 못한 일들을 포함하고 있다. 발생하는 뉴스의 거대한 양과 이를 전달하는 수많은 미디어들로 인해 사람들은 뉴스 콘텐츠를 이용하는데 많은 시간을 소비하게 된다. 하지만 미디어에 시시각각 나타나는 속보와 실시간 이슈의 대부분이 가십 기사로 이루어져 있어 사용자들이 자신의 성향에 맞는 뉴스를 선별하고, 뉴스로부터 정보를 획득하는 것은 쉽지 않은 일이다. 또한 사용자의 관심사가 시간에 따라 변하기 때문에 뉴스 제공에 있어 사용자의 변하는 관심사를 반영하는 것이 요구된다. 본 논문에서는 사용자의 최근 관심사를 기반으로 사용자 선호도에 맞는 뉴스를 제공하기 위한 콘텐츠 기반의 추천 기법 및 시스템을 제안한다. 사용자의 최근 선호도를 파악하기 위하여 소셜 네트워크 서비스인 Facebook 사용자의 정보와 최근 게시글을 이용하여 동적으로 사용자 프로파일을 생성하여 이를 뉴스 서비스에 활용하고, 사용자 선호도에 적합한 뉴스를 추출하기 위해서 뉴스 콘텐츠의 분석을 요구한다. 뉴스 콘텐츠 분석을 위해 미디어에서 제공되는 뉴스의 카테고리를 사용하고, 뉴스 방송원고의 분석 및 주요 키워드 추출을 통해 뉴스 프로파일을 생성한다. 사용자 프로파일과 뉴스 프로파일 간의 유사도 측정을 위해서는 두 프로파일 간 형식의 일치화가 요구되므로 사용자 프로파일을 뉴스 프로파일과 동일한 형태로 생성한다. 사용자가 시스템에 접속하면 시스템은 사용자 프로파일에 명시된 선호도를 기반으로 뉴스 프로파일과의 유사도를 측정하고, 사용자 선호도에 가장 적합한 뉴스들을 제공하게 된다. 또한 사용자에게 제공된 뉴스 프로파일과 다른 뉴스 프로파일들 간에 유사도를 측정하여 유사도가 높은 관련된 뉴스들을 제공하게 된다. 제안한 개인화된 뉴스 서비스의 성능을 평가하기 위해 사용자에게 추천된 뉴스에 대한 사용자 평가와 시스템 예측값의 오차를 기반으로 6Sub-Vectors 벤치마크 알고리즘과 성능 평가를 수행하였고, 실험 결과를 통해 제안한 시스템의 우수성을 입증하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.