• Title/Summary/Keyword: Profile accuracy

Search Result 574, Processing Time 0.024 seconds

Tip and taper compatibility of accessory gutta-percha points with rotary and reciprocating instruments

  • Julia Niero Zanatta Streck; Sabrina Arcaro;Renan Antonio Ceretta;Eduardo Antunes Bortoluzzi;Lucas da Fonseca Roberti Garcia;Josiane de Almeida ;Patricia Maria Poli Kopper ;Anarela Vassen Bernardi
    • Restorative Dentistry and Endodontics
    • /
    • v.48 no.3
    • /
    • pp.22.1-22.8
    • /
    • 2023
  • Objectives: This study was conducted to evaluate and compare the tip and taper compatibility of accessory gutta-percha points (AGPs) with various rotary and reciprocating instruments. Materials and Methods: Using a profile analyzer, tip and taper measurements were taken of 10 AGPs of each of the 14 models available from Odous de Deus and the 4 models available from Dentsply-Maillefer. Diameter measurements were taken at 1-mm intervals, from 3 mm from the tip (D3) to 16 mm. Results: Based on the mean values obtained, 3-dimensional (3D) models of the AGPs were drawn in Autodesk Fusion 360 and superimposed on 3D models of each instrument selected (Mtwo, Reciproc, RaCe, K3, and ProDesign Logic) to determine the compatibility between the instrument and the AGP. Data corresponding to the tips and tapers of the various AGPs, as well as the tip and taper differences between the AGPs and the instruments, were analyzed using descriptive statistics. The tapers of the AGPs were subject to the American National Standards Institute/American Dental Association No. 57 standard. The Odous de Deus extra-long medium and extra-long extra-medium AGPs were shown to be compatible with Mtwo, K3, and ProDesign Logic instruments with taper 0.06 and tip sizes 25 and 30, while the Dentsply fine and fine medium cones were compatible with Mtwo, RaCe, and K3 instruments with conicity of 0.04 and tip sizes 35 and 40. Conclusions: Both the Odous de Deus and Dentsply commercial brands included 2 AGP models with tip (D3) and taper compatibility with Mtwo, RaCe, K3, and/or Prodesign Logic instruments.

Comparison and Analysis of Photon Beam Data for Hospitals in Korea and Data for Quality Assurance of Treatment Planning System (국내 의료기관들의 광자 빔 데이터의 비교 분석 및 치료계획 시스템 정도관리자료)

  • Lee, Re-Na;Cho, Byung-Chul;Kang, Sei-Kwon
    • Progress in Medical Physics
    • /
    • v.17 no.3
    • /
    • pp.179-186
    • /
    • 2006
  • Purpose: Photon beam data of linear accelerators in Korea are collected, analyzed, and a simple method for checking and verifying the dose calculations in a TPS are suggested. Materials and Methods: Photon beam data such as output calibration condition, output factor, wedge factor, percent depth dose, beam profile, and beam quality were collected from 26 institutions in Korea. In order to verify the accuracy of dose calculation, ten sample planning tests were peformed. These Include square, elongated, and blocked fields, wedge fields, off-axis dose calculation, SSD variation. The planned data were compared to that of manual calculations. Results: The average and standard deviation of photon beam quality for 6, 10, and 15 MV were $0.576{\pm}0.005,\;0.632{\pm}0.004,\;and\;0.647{\pm}0.006$, respectively. The output factors of 6 MV photon beam measured at depth of dose maximum for $5{\times}5cm,\;15{\times}15cm,\;20{\times}20cm\;were\;0.944{\pm}0.006,\;1.031{\pm}0.006,\;and\;1.055{\pm}0.007$. For 10 MV photon beam, the values were $0.935{\pm}0.006,\;1.031{\pm}0.007,\;1.054{\pm}0.0005$. The collected data were not enough to calculate average, the output factors for 15MV photon beam with field size of $5{\times}5cm,\;15{\times}15cm,\;20{\times}20cm\;were\;0.941{\pm}0.008,\;1.032{\pm}0.004,\;1.049{\pm}0.014$. There was seven institutions $e{\times}ceeding$ tolerance when monitor unit values calculated from treatment planning system and manually were compared. The measured average MU values for the machines calibrated at SAD setup were 3 MU and 5 MU higher than the machines calibrated at SSD for 6 MV and 10 MV, respectively except the wedge case. When the wedges were inserted, the MU values to deliver 100 cGy to 5 cm depends on manufactures. When the same wedge angle was used, Siemens machine requires more MUs then Varian machine. Conclusion: In this study, photon beam data are collected and analyzed to provide a baseline value for chocking beam data and the accuracy of dose calculation for a treatment planning system.

  • PDF

Commissionning of Dynamic Wedge Field Using Conventional Dosimetric Tools (선량 중첩 방식을 이용한 동적 배기 조사면의 특성 연구)

  • Yi Byong Yong;Nha Sang Kyun;Choi Eun Kyung;Kim Jong Hoon;Chang Hyesook;Kim Mi Hwa
    • Radiation Oncology Journal
    • /
    • v.15 no.1
    • /
    • pp.71-78
    • /
    • 1997
  • Purpose : To collect beam data for dynamic wedge fields using conventional measurement tools without the multi-detector system, such as the linear diode detectors or ionization chambers. Materials and Methods : The accelerator CL 2100 C/D has two photon energies of 6MV and 15MV with dynamic wedge an91es of 15o, 30o, 45o and 60o. Wedge transmission factors, percentage depth doses(PDD's) and dose Profiles were measured. The measurements for wedge transmission factors are performed for field sizes ranging from $4\times4cm^2\;to\;20\times20cm^2$ in 1-2cm steps. Various rectangular field sizes are also measured for each photon energy of 6MV and 15MV, with the combination of each dynamic wedge angle of 15o 30o. 45o and 60o. These factors are compared to the calculated wedge factors using STT(Segmented Treatment Table) value. PDD's are measured with the film and the chamber in water Phantom for fixed square field. Converting parameters for film data to chamber data could be obtained from this procedure. The PDD's for dynamic wedged fields could be obtained from film dosimetry by using the converting parameters without using ionization chamber. Dose profiles are obtained from interpolation and STT weighted superposition of data through selected asymmetric static field measurement using ionization chamber. Results : The measured values of wedge transmission factors show good agreement to the calculated values The wedge factors of rectangular fields for constant V-field were equal to those of square fields The differences between open fields' PDDs and those from dynamic fields are insignificant. Dose profiles from superposition method showed acceptable range of accuracy(maximum 2% error) when we compare to those from film dosimetry. Conclusion : The results from this superposition method showed that commissionning of dynamic wedge could be done with conventional dosimetric tools such as Point detector system and film dosimetry winthin maximum 2% error range of accuracy.

  • PDF

Clinical Study of Primary Carcinoma of The Lung (III) (원발성 폐암의 조직학적 분류 및 임상적 관찰 (III))

  • Seo, Jee-Young;Park, Mee-Ran;Kim, Chang-Sun;Son, Hyung-Dae;Cho, Dong-Il;Rhu, Nam-Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.45 no.1
    • /
    • pp.45-56
    • /
    • 1998
  • Background: Lung cancer continues to increase worldwide. Also, the proportion of female patients incease and adenocarcinoma is the predominant histological type among lung cancer in many western countries. So, we studied these current trends of lung cancer by clinical approach of recent patients from our department Method: We conducted a retrospective analysis on 212 subjects who were diagnosed with lung cancer at the department of chest medicine in National Medical Center between January 1990 and July 1996. The contents of analysis were patient's profile, clinical manifestation, smoking habits, accuracy of diagnostic methods, histological cell type, staging and treatment, etc. Results: The results were as follows. 1) The ratio of male to female was 5.2 : 1. The peak incidence of age was 7th decade(35.4%). 2) Chief complaints were cough, dyspnea and chest pain, etc. The most common duration of symptoms before the first admission was less than 3 months(57.7%). On the other side, duration more than 1 year represented 6.5%. The early diagnosed patients has been increased from the 1980s. 3) Smokers among the total patients were 77.2%. The proportion of smokers in sqamous cell carcinoma, small cell carcinoma and adenocarcinoma were 88.4%, 85.7% and 55.7%, respectively. Smoking history and histological cell type were correlated in squamous and small cell carcinoma. 4) Squamous cell carcinoma is still the predominant histological type (44.8%), but, adenocarcinoma increased more than the previous study(30.7%). The other histological types were small cell carcinoma(17.0%) and large cell carcinoma(3.8%) in order of their proportions. 5) The accuracy of diagnostic methods were as follows: sputum cytology 75.3%, bronchoscopic biopsy 65.7%, lymph node aspiration cytology 95.8%, percutaneous lung aspiration cytology 94.6% and open lung biopsy 100%. The general accuracies of diagnostic methods were improved than previous studies. 6) Performance status scales on admission were relatively good. After diagnosis, chemotherapy and/or radiotherapy were undertaken in 69.3% of the patients, and only 7.5% of the patients were operated. Conclusion: In our study, squamous cell carcinoma is still the predominant histological cell type, but, adenocarcinoma continues to increase. Because adenocarcinoma is less correlated with smoking habits, further evaluation of other carcinogens than smoking is requested. Screening and early diagnosis of lung cancer is important for good performance status scales in spite of advanced stages. But, we think that the prevention, for example, stop smokings is more important as because of no perfect treatment for lung cancer.

  • PDF

Evaluation of the Satellite-based Air Temperature for All Sky Conditions Using the Automated Mountain Meteorology Station (AMOS) Records: Gangwon Province Case Study (산악기상관측정보를 이용한 위성정보 기반의 전천후 기온 자료의 평가 - 강원권역을 중심으로)

  • Jang, Keunchang;Won, Myoungsoo;Yoon, Sukhee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.1
    • /
    • pp.19-26
    • /
    • 2017
  • Surface air temperature ($T_{air}$) is a key variable for the meteorology and climatology, and is a fundamental factor of the terrestrial ecosystem functions. Satellite remote sensing from the Moderate Resolution Imaging Spectroradiometer (MODIS) provides an opportunity to monitor the $T_{air}$. However, the several problems such as frequent cloud cover and mountainous region can result in substantial retrieval error and signal loss in MODIS $T_{air}$. In this study, satellite-based $T_{air}$ was estimated under both clear and cloudy sky conditions in Gangwon Province using Aqua MODIS07 temperature profile product (MYD07_L2) and GCOM-W1 Advanced Microwave Scanning Radiometer 2 (AMSR2) brightness temperature ($T_b$) at 37 GHz frequency, and was compared with the measurements from the Automated Mountain Meteorology Stations (AMOS). The application of ambient temperature lapse rate was performed to improve the retrieval accuracy in mountainous region, which showed the improvement of estimation accuracy approximately 4% of RMSE. A simple pixel-wise regression method combining synergetic information from MYD07_L2 $T_{air}$ and AMSR2 $T_b$ was applied to estimate surface $T_{air}$ for all sky conditions. The $T_{air}$ retrievals showed favorable agreement in comparison with AMOS data (r=0.80, RMSE=7.9K), though the underestimation was appeared in winter season. Substantial $T_{air}$ retrievals were estimated 61.4% (n=2,657) for cloudy sky conditions. The results presented in this study indicate that the satellite remote sensing can produce the surface $T_{air}$ at the complex mountainous region for all sky conditions.

(Image Analysis of Electrophoresis Gels by using Region Growing with Multiple Peaks) (다중 피크의 영역 성장 기법에 의한 전기영동 젤의 영상 분석)

  • 김영원;전병환
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.5_6
    • /
    • pp.444-453
    • /
    • 2003
  • Recently, a great interest of bio-technology(BT) is concentrated and the image analysis technique for electrophoresis gels is highly requested to analyze genetic information or to look for some new bio-activation materials. For this purpose, the location and quantity of each band in a lane should be measured. In most of existing techniques, the approach of peak searching in a profile of a lane is used. But this peak is improper as the representative of a band, because its location does not correspond to that of the brightest pixel or the center of gravity. Also, it is improper to measure band quantity in most of these approaches because various enhancement processes are commonly applied to original images to extract peaks easily. In this paper, we adopt an approach to measure accumulated brightness as a band quantity in each band region, which Is extracted by not using any process of changing relative brightness, and the gravity center of the region is calculated as a band location. Actually, we first extract lanes with an entropy-based threshold calculated on a gel-image histogram. And then, three other methods are proposed and applied to extract bands. In the MER method, peaks and valleys are searched on a vertical search line by which each lane is bisected. And the minimum enclosing rectangle of each band is set between successive two valleys. On the other hand, in the RG-1 method, each band is extracted by using region growing with a peak as a seed, separating overlapped neighbor bands. In the RG-2 method, peaks and valleys are searched on two vertical lines by which each lane is trisected, and the left and right peaks nay be paired up if they seem to belong to the same band, and then each band region is grown up with a peak or both peaks if exist. To compare above three methods, we have measured the location and amount of bands. As a result, the average errors in band location of MER, RG-1, and RG-2 were 6%, 3%, and 1%, respectively, when the lane length is normalized to a unit value. And the average errors in band amount were 8%, 5%, and 2%, respectively, when the sum of band amount is normalized to a unit value. In conclusion, RG-2 was shown to be more reliable in the accuracy of measuring the location and amount of bands.

A Polarization-based Frequency Scanning Interferometer and the Measurement Processing Acceleration based on Parallel Programing (편광 기반 주파수 스캐닝 간섭 시스템 및 병렬 프로그래밍 기반 측정 고속화)

  • Lee, Seung Hyun;Kim, Min Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.253-263
    • /
    • 2013
  • Frequency Scanning Interferometry(FSI) system, one of the most promising optical surface measurement techniques, generally results in superior optical performance comparing with other 3-dimensional measuring methods as its hardware structure is fixed in operation and only the light frequency is scanned in a specific spectral band without vertical scanning of the target surface or the objective lens. FSI system collects a set of images of interference fringe by changing the frequency of light source. After that, it transforms intensity data of acquired image into frequency information, and calculates the height profile of target objects with the help of frequency analysis based on Fast Fourier Transform(FFT). However, it still suffers from optical noise on target surfaces and relatively long processing time due to the number of images acquired in frequency scanning phase. 1) a Polarization-based Frequency Scanning Interferometry(PFSI) is proposed for optical noise robustness. It consists of tunable laser for light source, ${\lambda}/4$ plate in front of reference mirror, ${\lambda}/4$ plate in front of target object, polarizing beam splitter, polarizer in front of image sensor, polarizer in front of the fiber coupled light source, ${\lambda}/2$ plate between PBS and polarizer of the light source. Using the proposed system, we can solve the problem of fringe image with low contrast by using polarization technique. Also, we can control light distribution of object beam and reference beam. 2) the signal processing acceleration method is proposed for PFSI, based on parallel processing architecture, which consists of parallel processing hardware and software such as Graphic Processing Unit(GPU) and Compute Unified Device Architecture(CUDA). As a result, the processing time reaches into tact time level of real-time processing. Finally, the proposed system is evaluated in terms of accuracy and processing speed through a series of experiment and the obtained results show the effectiveness of the proposed system and method.

Superficial Dosimetry for Helical Tomotherapy (토모테라피를 이용한 표면 치료 계획과 선량 분석)

  • Kim, Song-Yih;You, Sei-Hwan;Song, Tae-Soo;Kim, Yong-Nam;Keum, Ki-Chang;Cho, Jae-Ho;Lee, Chang-Geol;Seong, Jin-Sil
    • Radiation Oncology Journal
    • /
    • v.27 no.2
    • /
    • pp.103-110
    • /
    • 2009
  • Purpose: To investigate the feasibility of helical tomotherapy on a wide curved area of the skin, and its accuracy in calculating the absorbed dose in the superficial region. Materials and Methods: Two types of treatment plans were made with the cylinder-shaped 'cheese phantom'. In the first trial, 2 Gy was prescribed to a 1-cm depth from the surface. For the other trial, 2 Gy was prescribed to a 1-cm depth from the external side of the surface by 5 mm. The inner part of the phantom was completely blocked. To measure the surface dose and the depth dose profile, an EDR2 film was inserted into the phantom, while 6 TLD chips were attached to the surface. Results: The film indicated that the surface dose of the former case was 118.7 cGy and the latter case was 130.9 cGy. The TLD chips indicated that the surface dose was higher than these, but it was due to the finite thickness of the TLD chips. In the former case, 95% of the prescribed dose was obtained at a 2.1 mm depth, while the prescribed does was at 2.2 mm in the latter case. The maximum dose was about 110% of the prescribed dose. As the depth became deeper, the dose decreased rapidly. Accordingly, at a 2-cm depth, the dose was 20 % of the prescribed dose. Conclusion: Helical tomotherapy could be a useful application in the treatment of a wide area of the skin with curvature. However, for depths up to 2 mm, the planning system overestimated the superficial dose. For shallower targets, the use of a compensator such as a bolus is required.

Estimation of Groundwater Recharge by Considering Runoff Process and Groundwater Level Variation in Watershed (유역 유출과정과 지하수위 변동을 고려한 분포형 지하수 함양량 산정방안)

  • Chung, Il-Moon;Kim, Nam-Won;Lee, Jeong-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.5
    • /
    • pp.19-32
    • /
    • 2007
  • In Korea, there have been various methods of estimating groundwater recharge which generally can be subdivided into three types: baseflow separation method by means of groundwater recession curve, water budget analysis based on lumped conceptual model in watershed, and water table fluctuation method (WTF) by using the data from groundwater monitoring wells. However, groundwater recharge rate shows the spatial-temporal variability due to climatic condition, land use and hydrogeological heterogeneity, so these methods have various limits to deal with these characteristics. To overcome these limitations, we present a new method of estimating recharge based on water balance components from the SWAT-MODFLOW which is an integrated surface-ground water model. Groundwater levels in the interest area close to the stream have dynamics similar to stream flow, whereas levels further upslope respond to precipitation with a delay. As these behaviours are related to the physical process of recharge, it is needed to account for the time delay in aquifer recharge once the water exits the soil profile to represent these features. In SWAT, a single linear reservoir storage module with an exponential decay weighting function is used to compute the recharge from soil to aquifer on a given day. However, this module has some limitations expressing recharge variation when the delay time is too long and transient recharge trend does not match to the groundwater table time series, the multi-reservoir storage routing module which represents more realistic time delay through vadose zone is newly suggested in this study. In this module, the parameter related to the delay time should be optimized by checking the correlation between simulated recharge and observed groundwater levels. The final step of this procedure is to compare simulated groundwater table with observed one as well as to compare simulated watershed runoff with observed one. This method is applied to Mihocheon watershed in Korea for the purpose of testing the procedure of proper estimation of spatio-temporal groundwater recharge distribution. As the newly suggested method of estimating recharge has the advantages of effectiveness of watershed model as well as the accuracy of WTF method, the estimated daily recharge rate would be an advanced quantity reflecting the heterogeneity of hydrogeology, climatic condition, land use as well as physical behaviour of water in soil layers and aquifers.

Estimation of Groundwater Table using Ground Penetration Radar (GPR) in a Sand Tank Model and at an Alluvial Field Site (실내 모형과 현장 충적층에서 지하투과레이더를 이용한 지하수면 추정)

  • Kim, Byung-Woo;Kim, Hyoung-Soo;Choi, Doo-Houng;Koh, Yong-Kwon
    • The Journal of Engineering Geology
    • /
    • v.23 no.3
    • /
    • pp.201-216
    • /
    • 2013
  • Ground penetrating radar (GPR) surveys were conducted in a sand tank model in a laboratory and at an alluvial field site to detect the groundwater table and to investigate the influence of saturation on GPR response in the unsaturated zone. In the sand tank model, the groundwater table and saturation in the sand layer were altered by injecting water, which was then drained by a valve inserted into the bottom of the tank. GPR vertical reflection profile (VRP) data were obtained in the sand tank model for rising and lowering of the groundwater table to estimate the groundwater table and saturation. Results of the lab-scale model provide information on the sensitivity of GPR signals to changes in the water content and in the groundwater table. GPR wave velocities in the vadose zone are controlled mainly by variations in water content (increased travel time is interpreted as an increase in saturation). At the field site, VRP data were collected to a depth of 220 m to estimate the groundwater table at an alluvial site near the Nakdong river at Iryong-ri, Haman-gun, South Korea. Results of the field survey indicate that under saturated conditions, the first reflector of the GPR is indicative of the capillary fringe and not the actual groundwater table. To measure the groundwater table more accurately, we performed a GPR survey using the common mid-point (CMP) method in the vicinity of well-3, and sunk a well to check the groundwater table. The resultant CMP data revealed reflective events from the capillary fringe and groundwater table showing hyperbolic patterns. The normal moveout correction was applied to evaluate the velocity of the GPR, which improved the accuracy of saturation and groundwater table information at depth. The GPR results show that the saturation information, including the groundwater table, is useful in assessing the hydrogeologic properties of the vadose zone in the field.