• Title/Summary/Keyword: Profile accuracy

Search Result 574, Processing Time 0.031 seconds

Channel Transfer Function Estimation based on Delay and Doppler Profile for Underwater Acoustic OFDM Communication System

  • Shiho, Oshiro;Tomohisa, Wada
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.1
    • /
    • pp.96-102
    • /
    • 2023
  • In this paper, we proposed Channel Transfer Function estimation based on Delay and Doppler Profile for underwater acoustic OFDM communication system. It improved the estimation accuracy of the channel transfer function by linear time interpolation the change of Scattered Pilot (SP) insertion frequency in the time direction and the time by Delay and Doppler profile that analyzes the multipath situation of the channel investigated the performance of interpolation by simulation and report it. Previous works is inserted SP every 4 OFDM. It was effective under the environment without multipath, but it has observed that the effect of CTF compensation has been lowered in multipath channel condition. In addition to be better when inserted SP every 2 OFDM. But the amount of sending data will be decrease. Therefore, we conducted research to improve 4 OFDM with new interpolator. A computer simulation was performed as a comparison of SP inserted every 4 OFDM, SP inserted every 2 OFDM, and 4 OFDM with new interpolator. the performance of the proposed system is overwhelmingly improved, and the performance is slightly improved even 64 QAM.

Corrective Machining Algorithm for Improving the Motion Accuracy of Hydrostatic Bearing Tables

  • Park, Chun-Hong;Lee, Chan-Hong;Lee, Husang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.2
    • /
    • pp.60-67
    • /
    • 2004
  • For improving the motion accuracy of hydrostatic tables, a corrective machining algorithm is proposed in this paper. The algorithm consists of three main processes. The reverse analysis is performed firstly to estimate the rail profile from the measured linear and angular motion error, in the algorithm. For the next step, the corrective machining information is obtained based upon the estimated rail pronto. Finally, the motion errors on the correctively machined rail are analyzed by using the motion error analysis method. These processes are iterated until the analyzed motion errors are satisfactory within the target accuracy. In order to verify the validity of the algorithm theoretically, the motion errors calculated by the estimated rail after the corrective machining process, are compared with those by the true rail which is previously assumed as the initially measured value. The motion errors calculated using the estimated rail show good agreement with the assumed values, and it is shown that the algorithm is effective in acquiring the corrective machining information to improve the accuracy of hydrostatic tables.

Analysis of Downhole Seismic Data Using Inversion Method (역산이론을 이용한 공내하향 탄성파시험 결과의 해석)

  • 목영진
    • Geotechnical Engineering
    • /
    • v.10 no.4
    • /
    • pp.29-38
    • /
    • 1994
  • A new method of analyzing downhole seismic data is presented. The method is based upon inverse theory and can be used to resolve wave velocity profiles to a much greater accuracy than possible with conventional analysis methods such as direct or interval measurements. In addition, use of inverse theory permits a rational basis for judging the quality of the velocity profile. Five case studies are presented to illustrate application of the inversion method at various geological formations.

  • PDF

An FE-based Model for the Prediction of Deformed Roll Profile in Multi-high Rolling Mills - Part I : Development of the Model (다단 압연기에서의 롤 변형 프로파일 예측 모델 - Part I : 모델 개발)

  • Cho, J.H.;Hwang, S.M.
    • Transactions of Materials Processing
    • /
    • v.21 no.7
    • /
    • pp.420-425
    • /
    • 2012
  • A new model is suggested for the prediction of radial displacements of a roll in order to analyze multi-high rolling mills. The model was developed from predictions based on finite element simulations. This model utilizes the compliance coefficient, which is expressed as a function of three dimensionless parameters, and is approximated by using the same interpolation function as used in the finite element method. The prediction accuracy of the model is demonstrated through comparison with the predictions from the FE model.

Infeed Control Algorithm of Sorting System Using Modified Trapezoidal Velocity Profiles

  • Kim, Ki Hak;Choi, Yong Hoon;Jung, Hoon
    • ETRI Journal
    • /
    • v.37 no.2
    • /
    • pp.328-337
    • /
    • 2015
  • This paper applies acceleration/deceleration control-based velocity profiles to an infeed control algorithm for a cross-belt-type sorting system to improve the accuracy and performance of the system's infeed. The velocity profiles are of a trapezoidal shape and often have to be modified to ensure that parcels correctly synchronize with their intended carriers. Under the proposed method, an infeed line can handle up to 5,600 items/h, which indicates a 40% increase in performance in comparison with its existing handling rate of 4,000 items/h. This improvement in performance may lead to a reduction in the number of infeed lines required in a sorting system. The proposed infeed control algorithm is applied to a cross-belt-type sorting system (model name: SCS 1500) manufactured by Vanderlande Industries.

A Study on the Waviness Compensation System of Ultraprecision Machining (초정밀가공의 파상도 보정시스템에 관한 연구)

  • Kim, Jeoung-Du
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.6
    • /
    • pp.132-140
    • /
    • 1998
  • Recently, precision machining technology has been developed continuously in order to make high productivity and quality assurance of the precision parts of several industrial fields. Waviness may occur on the surface of the machined parts due to the table motion error and the dynamic cutting mechanism between the tool and the workpiece. The waviness may fall off the form accuracy of the precision machine parts. In the research, a micro cutting device with piezoelectric actuator has been developed to control precise depth of cut and compensate the waviness on the surface of the workpiece. Experiments have been carried out in the precision lathe. The characteristics of the surface profile and cause of the waviness profile have been analyzed and waviness profiles of some cause have been compared with those of experiments.

  • PDF

Cam Profile Design for Precision Positioning (정밀위치결정을 위한 캠 형상 설계)

  • 이종호;이종길;김병희;전병희
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.204-209
    • /
    • 2003
  • Cam mechanisms are one of the most popular devices for generating intermittent motion and are widely used in many areas. Also, as being interested in research of precision field, cam mechanism is required high accuracy and continuity, In. In this paper, the cam mechanism of filament automatic assembly machine design for precision motion is proposed. The modelling of a cam mechanism, cam profile functions, and the design of the cam considering the precision positioning of the cam mechanism is studied. And, simulation of designed cam mechanism had been carried out dynamic analysis.

  • PDF

Analysis of Gradually Varied Flow Considering Relative Depth in Circular Pipe (원형관에서 상대수심을 고려한 점변류 해석)

  • Kim, Minhwan;Park, Junghee;Song, Changsoo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.3
    • /
    • pp.287-294
    • /
    • 2007
  • When we use the circular pipes for wastewater and storm water, we should be known the characteristics of the flow for accurate design. To elevate the design accuracy, we want to know the profile of flow. The roughness coefficient in the Manning equation is constant, but in actuality changed with the relative depth in circular pipe. This study was conducted to calculate the relative normal depth in changing the roughness coefficient (named relative roughness coefficient) with the relative depth in the analysis of gradually varied flow in the circular pipe by Newton-Raphson method. We performed the analysis of gradually varied flow using the relative normal depth and the relative roughness coefficient. We presented the 12 flow profiles with the relative depth and the relative roughness coefficient in circular pipe. The flow classification considering relative depth in circular pipe is available to analyse gradually varied flow profiles.

Off-Design Performance Prediction of an Axial Flow Compressor Stage Using Simple Loss Correlations (간단한 손실모델을 이용한 단단축류압축기 탈설계점 성능예측)

  • 김병남;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3357-3368
    • /
    • 1994
  • Total pressure losses required to calculate the total-to-total efficiency are estimated by integrating empirical loss coefficients of four loss mechanisms along the mean-line of blades as follows; blade profile loss, secondary flow loss, end wall loss and tip clearance loss. The off-design points are obtained on the basis of Howell's off-design performance of a compressor cascade. Also, inlet-outlet air angles and camber angle are obtained from semi-empirical relations of transonic airfoils' minimum loss incidence and deviation angles. And nominal point is replaced by the design point. It is concluded that relatively simple loss models and Howell's off-design data permit us to calculate the off-design performance with satisfactory accuracy. And this method can be easily extended for off-design performance prediction of multi-stage compressors.

A study on Three Dimensional Configuration Scan by Photographing Parameters (스퍼기어의 3차원 모델링과 검증에 관한 연구)

  • 김세민;김민주;이승수;김순경;전언찬
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.369-374
    • /
    • 2001
  • Gear is general mechanical elements that used for power transmission between two shafts that interval is comparatively short. and it delivers big power as accurate ratio of speed. The profile of Spur gear which is the most basic factor is divided into Trochoidal fillet curve and Involute curve. Involute curve is used a lot of a shaped curve of machine parts such as a gear, a scroll compressor and a collar of centrifugal pump. However, it is poor to study the modeling of Trochoidal fillet curve and the three dimensions model shaped mathematical curve. This paper describes a mathematical model of profile shifted involute gear. and this model is based on Camus's theory. We draw three dimensions gear have accurate mathematical function using ADS, VisualLISP. and To check accuracy and perfection, we make a program of checking Interference. and use for this study.

  • PDF