• Title/Summary/Keyword: Profile Monitoring

Search Result 292, Processing Time 0.021 seconds

Genetic Identification and Biochemical Characteristics of Edwardsiella Strains Isolated from Freshwater Fishes Cultured in Korea (내수면 양식 어류에서 분리된 Edwardsiella 속 균주들의 유전학적 동정 및 생화학적 특성)

  • Jang, Mun Hee;Kim, Keun-Yong;Lee, Yu Hee;Oh, Yun Kyung;Lee, Jeong-Ho;Song, Jun-Young
    • Journal of fish pathology
    • /
    • v.33 no.2
    • /
    • pp.111-118
    • /
    • 2020
  • The genus Edwardsiella belonging to the family Enterobacteriaceae is a member of Gram-negative rod-shaped bacteria that cause disease in diverse aquatic organisms such as fish, amphibians and reptiles as well as avians and mammals including human throughout the world. This genus had been composed of three species, E. hoshinae, E. ictaluri and E. tarda, but recent researches erected two novel species, E. anguillarum and E. piscicida that were conventionally identified as E. tarda. In this study, we isolated seven strains belonging to the genus Edwardsiella from freshwater fishes that had been reared at inland fish farms in South Korea and investigated their biochemical characteristics and molecular phylogenetic relationships. The seven strains showed typical characteristics of four Edwardsiella species, E. anguillarum, E. ictaluri, E. piscicida and E. tarda, by biochemical analyses of Gram staining, indole and hydrogen sulfide (H2S) production, and API (Analytic Profile Index) 20E test. Molecular phylogenetic analyses inferred from DNA sequence data of both 16S ribosomal RNA (rRNA) and DNA gyrase subunit B (gyrB) genes were congruent with the biochemical characteristics. As a result, both biochemical and molecular phylogenetic analyses identified four strains isolated from three Anguilla species as E. anguillarum, E. piscicida and E. tarda, two strains from Pelteobagrus fulvidraco and Silurus asotus as E. ictaluri, and one strain from Moroco oxycephalus as E. piscicida. In this study, we isolated and successfully identified recently newly erected species, E. anguillarum and E. piscicida in addition to historically notorious pathogenic species, E. ictaluri and E. tarda. In the future study, systematic and comprehensive monitoring of the four Edwardsiella species are required for studying differences in pathogenicity among freshwater fishes.

Bathymetric and Topographic Changes of the Gomso-Bay Tidal Flat, West Coast of the Korean Peninsula (한반도 서해안 곰소만 갯벌의 수심 및 지형 변화)

  • Jin Ho Chang;Yong-Gil Kim;Myong Sun Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.6
    • /
    • pp.552-561
    • /
    • 2023
  • The seafloor topography of Gomso Bay on the west coast of Korea was investigated using subtidal bathymetry and tidal-flat altimetry. Gomso Bay consists of 80% tidal flats and 20% subtidal zone, and is divided into an outer bay and an inner bay by the Jujincheon esturary channel. The outer bay tidal flat, has few tidal channels, has a concave topographic profile, and is characterized by the development of chenier and intertidal sand bars, giving it the appearance of gently sloping, dissipative beaches. The inner bay tidal flat has wide upper and middle tidal flats with a well-developed tidal channel system without cheniers. Moreover, the topographical cross-section between these tidal channels is convex upward, and shows the characteristics of a depositional environment greatly influenced by tidal channels and tidal action. An analysis of the horizontal movement of the tidal flat environment over the past 37 years investigating changes in the iso-depth lines in the Gomso-Bay tidal flat between 1981 and 2018 revealed that the Gomso-Bay tidal flat retreated gradually landward. As a result of analyzing the erosion and sedimentation characteristics of Gomso Bay, assuming that most of the water depth changes were due to changes in the elevation of the sea floor and sea level, an average of 1 cm (0 mm/y) of sediment was eroded in the outer bay over the past 37 years (1981-2018), In the inner bay, an average of 50 cm (14 mm/y) was deposited. Notably, the high tidal flats of the outer bay were largely eroded. Monitoring photographs of the coast showed that most of the erosion of the high tidal flats in the outer bay occurred in a short period around 1999 (probably 1997-2002), and that the erosion resulted from the erosion of sand dunes and high-tide beaches caused by temporarily greatly raised high tide levels and storms.