• Title/Summary/Keyword: Profi1ing

Search Result 2, Processing Time 0.017 seconds

Stress Analysis on the Cam-Roller Contact Parts in a Marine Diesel Engine (박용 디젤기관 캠-롤러 접촉부의 응력 해석)

  • 김형자;임우조;조용주;구영필
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.174-180
    • /
    • 2002
  • The subsurface stress field beneath the roller's contacting surface due to the contact pressure in lubricating condition has been calculated. Main purpose of this study in view of engineering is to prove the validity of the numerical profile roller presented by Koo et al. The Love's rectangular patch solution was used to obtain the subsurface stress field. The stress field of the numerical profile roller was compared with the one of the existing dub-off profile roller The analysis results show reduced subsurface stresses for the numerical profile roller.

Property of Composite Silicide from Nickel Cobalt Alloy (니켈 코발트 합금조성에 따른 복합실리사이드의 물성 연구)

  • Kim, Sang-Yeob;Song, Oh-Sung
    • Korean Journal of Materials Research
    • /
    • v.17 no.2
    • /
    • pp.73-80
    • /
    • 2007
  • For the sub-65 nm CMOS process, it is necessary to develop a new silicide material and an accompanying process that allows the silicide to maintain a low sheet resistance and to have an enhanced thermal stability, thus providing for a wider process window. In this study, we have evaluated the property and unit process compatibility of newly proposed composite silicides. We fabricated composite silicide layers on single crystal silicon from $10nm-Ni_{1-x}Co_x/single-crystalline-Si(100),\;10nm-Ni_{1-x}Co_x/poly-crystalline-\;Si(100)$ wafers (x=0.2, 0.5, and 0.8) with the purpose of mimicking the silicides on source and drain actives and gates. Both the film structures were prepared by thermal evaporation and silicidized by rapid thermal annealing (RTA) from $700^{\circ}C\;to\;1100^{\circ}C$ for 40 seconds. The sheet resistance, cross-sectional microstructure, surface composition, were investigated using a four-point probe, a field emission scanning probe microscope, a field ion beam, an X-ray diffractometer, and an Auger electron depth profi1ing spectroscopy, respectively. Finally, our newly proposed composite silicides had a stable resistance up to $1100^{\circ}C$ and maintained it below $20{\Omega}/Sg$., while the conventional NiSi was limited to $700^{\circ}C$. All our results imply that the composite silicide made from NiCo alloy films may be a possible candidate for 65 nm-CMOS devices.