• Title/Summary/Keyword: Production yield

Search Result 4,661, Processing Time 0.035 seconds

Greenhouse Environment and Growth of Green Pepper (Capsicum annuum L.) in Greenhouse Covered with CEM BIO Film (CEM BIO Film 피복시설의 환경특성과 풋고추 생육)

  • Chun, Hee;Kim, Kyung-Je;Kwon, Young-Sam;Kim, Hyun-Hwan;Lee, Si-Young
    • Journal of Bio-Environment Control
    • /
    • v.9 no.3
    • /
    • pp.161-165
    • /
    • 2000
  • Spectroradiometric light transmittance from 300 to 1,100nm in the greenhouse covered with the CEM BIO polyethylene film was greater than that in the greenhouse covered with polyethylene film (control). As a whole, solar radiation transmittance into greenhouse was a half level, due to shades caused by double layer covering, frame and equipment. Net radiation energy emitted throughout surface of the greenhouse covered with CEM BIO polyethylene film was 5,424.5W.m$^{-2}$ , which was lower by 2.9% as compared to that of the greenhouse covered with polyethylene film. Photosynthetically active radiation from 400 to 700nm of the greenhouse covered with CEM BIO polyethylene film was 3,861.2W.m$^{-2}$ , which was higher by 3.8% as compared to hat of the greenhouse covered with polyethylene film. Accumulated minimum air temperature from Oct. 7, 1997 to Oct. 16, 1997 of the greenhouse covered with CEM BIO polyethylene film was 100.5$^{\circ}C$, which was higher by 2.5$^{\circ}C$ as compared to that of the greenhouse covered with polyethylene film. As results, height, stem diameter, leaf count, leaf area, fresh weight and dry weight of green pepper plants and canopy production structure measured at 30 days after transplanting were enhanced. Mean fruit weight n the greenhouse covered with CEM BIO polyethylene film was 11.28 g and 1.25 g greater as compared to that in the greenhouse covered with polyethylene film, due to increased fruit diameter and flesh thickness. Percent marketable fruits produced in the greenhouse covered with CEM BIO polyethylene film were 96.1%, and was greater by 2.7% thant that of the greenhouse covered with polyethylnee film due to decreased infection, sterility, severe curve and twisted fruits. The green pepper yield of the greenhouse covered with CEM BIO polyethylene film from Nov. 19, 1997 to Feb. 3, 1998 was greater by 974 kg per hectare than that of the greenhouse covered with polyethylene film, but the total fruit had no difference.

  • PDF

Production and CO2 Adsorption Characteristics of Activated Carbon from Bamboo by CO2 Activation Method (CO2 활성화법에 의한 대나무 활성탄 제조와 CO2 흡착 특성)

  • Bak, Young-Cheol;Cho, Kwang-Ju;Choi, Joo-Hong
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.146-152
    • /
    • 2005
  • The activated carbon was produced from Sancheong bamboo by carbon dioxide gas activation methods. The carbonization of raw material was conducted at $900^{\circ}C$, and $CO_2$ activation reactions were conducted under various conditions: activation temperatures of $750-900^{\circ}C$, flow rates of carbon dioxide $5-30cm^3/g-char{\cdot}min$, and activation time of 2-5 h. The yield, adsorption capacity of iodine and methylene blue, specific surface area and pore size distribution of the prepared activated carbons were measured. The adsorption capacity of iodine (680.8-1450.1 mg/g) and methylene blue (23.5-220 mg/g) increased with increasing activation temperature and activation time. The adsorption capacity of iodine and methylene blue increased with the $CO_2$ gas quantity in the range of $5-18.9cm^3/g-char{\cdot}min$. But those decreased over those range due to the pore shrinkage. The specific volume of the mesopore and macropore of bamboo activated carbon were $0.65-0.91cm^3/g$. Because of this large specific volume, it can be used to the biological activated carbon process. Bamboo activated carbon phisically adsorbed the $CO_2$ of maximum 106 mg/g-A.C in the condition of 90% $CO_2$ and adsorption temperature of $20^{\circ}C$. The $CO_2$ adsorption ability of bamboo activated carbon was not changed in the 5 cyclic test of desorption and adsorption.

High Yield Bacterial Expression and Purification of Active Cytochrome P450 p-coumarate-3-hydroxylase (C3H), the Arabidopsis Membrane Protein (대장균 시스템을 이용한 Arabidopsis 막 단백질 cytochrome P450 p-coumarate-3hydroxylase (C3H) 활성형의 과발현 및 분리정제)

  • Yang, Hee-Jung;Kim, Wan-Yeon;Yun, Young-Ju;Yoon, Ji-Won;Kwon, Tae-Woo;Youn, Hye-Sook;Youn, Bu-Hyun
    • Journal of Life Science
    • /
    • v.19 no.8
    • /
    • pp.1039-1046
    • /
    • 2009
  • The cytochrome P450s (P450s) metabolizing natural products are among the most versatile biological catalysts known in plants, but knowledge of the structural basis for their broad substrate specificity has been limited. The activity of p-coumarate 3-hydroxylase (C3H) is thought to be essential for the biosynthesis of lignin and many other phenylpropanoid pathway products in plants however, all attempts to express and purify the protein corresponding C3H gene have failed. As a result, no conditions suitable for the unambiguous assay of the enzyme are known. The detailed understanding of the mechanism and substrate-specificity of C3Hdemands a method for the production of active protein on the milligram scale. We have developed a bacterial expression and purification system for the plant C3H, which allows for the quick expression and purification of active wild-type C3H via introduction of combinational mutagenesis. The modified cytochrome P450 C3H ($C3H_{mod}$) could be purified in the absence of detergent using immobilized metal affinity chromatography and size exclusion chromatography following extraction from isolated membranes in a high salt buffer and catalytically activated. This method makes the use of isotopic labeling of C3H for NMRstudies and X-ray crystallography practical, and is also applicable to other plant cytochrome P450 proteins.

Characterization and Purification of the Bacteriocin Produced by Bacillus licheniformis Isolated from Soybean Sauce (간장에서 분리한 Bacillus licheniformis가 생산하는 박테리오신의 특성 및 정제)

  • Jung, Sung-Sub;Choi, Jung-I;Joo, Woo-Hong;Suh, Hyun-Hyo;Na, Ae-Sil;Cho, Yong-Kweon;Moon, Ja-Young;Ha, Kwon-Chul;Paik, Do-Hyeon;Kang, Dae-Ook
    • Journal of Life Science
    • /
    • v.19 no.7
    • /
    • pp.994-1002
    • /
    • 2009
  • A bacteriocin-producing bacterium identified as Bacillus licheniformis was isolated from soybean sauce. Antibacterial activity was confirmed by paper disc diffusion method, using Micrococcus luteus as a test organism. The bacteriocin also showed antibacterial activities against Bacillus sphaericus, Lactobacillus bulgaricus, Lactobacillus planiarum, Paenibacillus polymyxa, and Pediococcus dextrinicus. Optimal culture conditions for the production of bacteriocin was attained by growing the cells in an MRS medium at a pH of 6.5~ 7.0 and a temperature of 37$^\circ$C for 36$\sim$48 hr. Solvents such as chloroform, ethanol, acetone, and acetonitrile had little effect on bacteriocin activity. However, about 50% of bacteriocin activity diminished with treatment of methanol and isopropanol at the final concentration of 50% at 25$^\circ$C for 1 hr. It was stable against a pH variation range from 3.0 and 7.0, but the activity reduced to 50% at a pH range from 9.0 to 11.0. It's activity was not affected by heat treatment at 100$^\circ$C for 30 min and 50% of activity was retained after heat treatment at 100$^\circ$C for 60 min, showing high thermostability. The bacteriocin was purified to a homogeneity through ammonium sulfate precipitation, SP-Sepharose ion-exchange chromatography, and reverse-phase high-performance liquid chromatography (HPLC). The entire purification protocol led to a 75-fold increase in specific activity and a 13.5% yield of bacteriocin activity. The molecular weight of purified bacteriocin was estimated to be about 2.5 kDa by tricine-SDS-PAGE.

Skin-Whitening and UV-Protective Effects of Angelica gigas Nakai Extracts on Ultra High Pressure Extraction Process (초고압 추출 공정에 의한 당귀 추출물의 미백 및 자외선 차단 효과)

  • Kim, Cheol-Hee;Kwon, Min-Chul;Han, Jae-Gun;Na, Chun-Su;Kwak, Hyeong-Geun;Choi, Geun-Pyo;Park, Uk-Yeon;Lee, Hyeon-Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.16 no.4
    • /
    • pp.255-260
    • /
    • 2008
  • This study was performed to investigate the enhancement of UV-protection activities and skin-whitening effects from Angelica gigas Nakai extracts on ultra high pressure extraction process. Extraction at $60^{\circ}C$ treated by ultra high pressure for 15 minute and associated with ultrasofication (HPE15) was showed more than double yield, compare conventional extraction, as 12.24% (w/w) from A. gigas. Extracts of HPE15 reduced expression of MMP-1 on UV-irradiated CCD-986sk cells as 122.2% and revealed high inhibitory potency on tyrosinase as 69.4% by adding samples. Extracts of HPE15 from A. gigas showed strong inhibition effect on melanin production test by Clone M-3 cells as 82.4% by adding extracts. From the preliminary observations, we considered that the extracts from A. gigas could be potent natural materials for skin-whitening agent, and could be used as a potential anti-aging agent for the photo-damaged skin.

Variation in Quality and Preference of Sogokju (Korean Traditional Rice Wine) from Waxy Rice Varieties (찰벼 품종에 따른 소곡주의 품질 및 기호도 변이)

  • Chun, A-Reum;Kim, Dae-Jung;Yoon, Mi-Ra;Oh, Sea-Kwan;Hong, Ha-Cheol;Choi, Im-Soo;Woo, Koan-Sik;Kim, Kee-Jong;Ju, Seong-Cheol
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.55 no.2
    • /
    • pp.177-186
    • /
    • 2010
  • This study was carried out to compare the physicochemical characteristics and preference as a sensory quality of Sogokju (Korean traditional rice wine) from waxy rice varieties. The protein and moisture contents of milled waxy rice varieties were ranged 6.9~7.2% and 12.1~ 12.6%, respectively. Nunbora had the largest grain size. In pasting properties, Hangangchalbyeo had the highest peak, trough and final viscosities, and Dongjinchalbyeo had the lowest viscosity curve. These differences suppose to be caused by the amylopectin(AP) structure: Dongjinchalbyeo has the largest short AP chains (degree of polymerization (DP) 6-12) and the smallest middle AP chains (DP 13-24) in 9 waxy rice varieties, while Hangangchalbyeo has the smallest short AP chains and the largest middle AP chains. The alcohol contents of Sogokju brewed from 9 waxy rice varieties were 17.6~19.9%. The brix degree were ranged $20.5{\sim}23.9^{\circ}Bx$. The organic acid of Sogokju consisted mainly of succinic acid, and the free sugar of it consisted mostly of glucose. The sensory evaluation showed the highest palatability at the Sogokju from Baegseolchalbyeo. The palatability was positively correlated with the brix degree, the glucose content, and the turbidity, and negatively correlated with the production yield of Sogokju.

A Comparison of the Components and Biological Activities in Raw and Boiled Red Beans (Phaseolus radiatus L.) (생팥과 증자팥의 성분 및 생리활성 비교)

  • Lee, Ryun Kyung;Kim, Mi-Sun;Lee, Ye-Seul;Lee, Man-Hyo;Lee, Jong Hwa;Sohn, Ho-Yong
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.2
    • /
    • pp.162-169
    • /
    • 2014
  • In the course of study for the development of functional food using red beans (azuki beans, Phaseolus radiatus L.), the ethanol extracts from raw-red bean (RRB) and boiled-red bean (BRB) were prepared, and the components and various biological activities of both were compared. It was observed that the extraction yield, and the total polyphenol content, of the BRB were 1.2 times higher than that of the RRB. However, the contents of total flavonoid, total sugar and reducing sugar in the BRB were 30, 27.9 and 30.8% respectively when compared with those of RRB. In relation to antioxidative activity, both RRB and BRB exhibited moderate DPPH anion, ABTS cation, and nitrite scavenging activities and reducing power, though in all cases RRB demonstrated stronger activities than BRB. The extracts of RRB and BRB did not reveal any antimicrobial activities. In a ${\alpha}$-amylase inhibitory activity assay, RRB was higher than BRB, while BRB showed higher ${\alpha}$-glucosidase inhibitory activity than RRB. A strong and particular activity was observed in an anti-thrombosis activity assay of RRB. The extract of RRB demonstrated strong inhibitions against prothrombin and blood coagulation factors, with moderate thrombin inhibition. However, the extract of BRB did not exhibit any significant anti-thrombosis activity. Our results indicate that RRB has different, but useful biological activities, and loss or elimination of the biologically active substances in RRB occurs during the production of BRB. Therefore, to develop more functional foods from red beans, a study of suitable boiling, heating and drying processes is essential, and the efficient re-use of boiled waste water from the boiling process is necessary. These results could be applied to the further development of functional red bean beverages and sweat red bean pastes.

Performance of Upflow Anaerobic Bioelectrochemical Reactor Compared to the Sludge Blanket Reactor for Acidic Distillery Wastewater Treatment (상향류식 혐기성 슬러지 블랭킷 반응조에 비교한 생물전기화학 반응조의 산성 주정폐수처리성능)

  • Feng, Qing;Song, Young-Chae;Yoo, Kyuseon;Lal, Banwari;Kuppanan, Nanthakumar;Subudhi, Sanjukta
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.6
    • /
    • pp.279-290
    • /
    • 2016
  • The performance of upflow anaerobic bioelectrochemical reactor (UABE), equipped with electrodes (anode and cathode) inside the upflow anaerobic reactor, was compared to that of upflow anaerobic sludge blanket (UASB) reactor for the treatment of acidic distillery wastewater. The UASB was stable in pH, alkalinity and VFAs until the organic loading rate (OLR) of 4.0 g COD/L.d, but it became unstable over 4.0 g COD/L.d. As a response to the abrupt doubling in OLR, the perturbation in the state variables for the UABE was smaller, compared to the UASB, and quickly recovered. The UABE stability was better than the UASB at higher OLR of 4.0-8.0 g COD/L.d, and the UABE showed better performance in specific methane production rate (2,076mL $CH_4/L.d$), methane content in biogas (66.8%), and COD removal efficiency (82.3%) at 8.0 g COD/L.d than the UASB. The maximum methane yield in UABE was about 407mL/g $COD_r$ at 4.0 g COD/L.d, which was considerably higher than about $282mL/g\;COD_r$ in UASB. The rate limiting step for the bioelectrochemical reaction in UABE was the oxidation of organic matter on the anode surface, and the electrode reactions were considerably affected by the pH at 8.0 g COD/L.d of high OLR. The maximum energy efficiency of UABE was 99.5%, at 4.0 g COD/L.d of OLR. The UABE can be an advanced high rate anaerobic process for the treatment of acidic distillery wastewater.

New Technologies for the Removal of Bacteriophages Contaminating Whey and Whey Products as Cheese by-Products: A Review (치즈 부산물인 유청과 유청 제품에 감염된 박테리오파지 제거를 위해 새롭게 개발된 기술: 총설)

  • Kim, Dong-Hyeon;Chon, Jung-Whan;Kim, Hyun-Sook;Kim, Hong-Seok;Song, Kwang-Young;Hwang, Dae-Geun;Yim, Jin-Hyuk;Kang, Il-Byung;Lee, Soo-Kyung;Seo, Kun-Ho
    • Journal of Dairy Science and Biotechnology
    • /
    • v.32 no.2
    • /
    • pp.93-100
    • /
    • 2014
  • In general, whey obtained from various cheese batches is being reused, so as to improve the texture and to increase the yield and the nutrient value of the various final milk-based products. In fact, re-usage of whey proteins, including whey cream, is a common and routine procedure. Unfortunately, most bacteriophages can survive heat treatments such as pasteurization. Hence, there is a high risk of an increase in the bacteriophage population during the cheese-making process. Whey samples contaminated with bacteriophages can cause serious problems in the cheese industry. In particular, the process of whey separation frequently leads to aerosol-borne bacteriophages and thus to a contaminated environment in the dairy production plant. In addition, whey proteins and whey cream reused in a cheese matrix can be infected by bacteriophages with thermal resistance. Therefore, to completely abolish the various risks of fermentation failure during re-usage of whey, a whey treatment that effectively decreases the bacteriophage population is urgently needed and indispensable. Hence, the purpose of this review is to introduce various newly developed methods and state-of-the-art technologies for removing bacteriophages from contaminated whey and whey products.

  • PDF

Development of New Mushroom Substrate using Kapok Seedcake for Bottle Culture of Oyster Mushroom(Pleurotus ostreatus). (케이폭박을 이용한 병재배 느타리버섯의 대체배지 개발)

  • Won, Seon-Yi;Lee, Yun-Hae;Jeon, Dae-Hoon;Ju, Young-Cheoul;Lee, Yong-Beom
    • The Korean Journal of Mycology
    • /
    • v.38 no.2
    • /
    • pp.130-135
    • /
    • 2010
  • To select the viable alternative substrates among the variable organic substrates for productivity enhancement and production cost-reduction of oyster mushroom in bottle culture, this study was carried out at mushroom research institute of GGRDA in 2007. In bottle culture of oyster mushroom (Plerutus ostreatus), the seedcakes of rape (RS), soybean (SS), coconut (CCS), and kapok (KS) were examined as substitute of cotton seedcake which was primary nutritive material of mushroom growing substrate. The chemical properties of substrate mixed with kapok seedcake is similar to the mixture with cotton seedcake in T-C, T-N, C/N ratio, and other nutrients. Mixed growing substrate containing cotton seedcake and kapok seedcake was superior to other mixtures 99.2% and 99.5%, respectively in spawning ratio and was faster mycellium growth in column test than that of soybeen seedcake, cotton + soybeen seedcake, and coconut seedcake. The period required in first pin-heading was 1-2 days longer in rape and soybeen seedcake mixture. Also there wad no primodia and fruitbody formation at soybeen seedcake mixture which had highest T-N content among the other mixed substrates. Yield per bottle and biological efficiency were highest of 144.6 g and 75.4%, respectively at kapok seedcake mixture. As a result, this study found that cotton seedcake can be replaced with kapok seedcake in bottle culture of oyster mushroom.