• Title/Summary/Keyword: Production scheduling

Search Result 452, Processing Time 0.023 seconds

Knowledge-based Approach for Solving Short-term Power Scheduling in Extended Power Systems (확장된 발전시스템에서 지식기반 해법을 이용한 단기운영계획 수립에 관한 연구)

  • 김철수
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.23 no.2
    • /
    • pp.187-200
    • /
    • 1998
  • This paper presents an original approach for solving short-term power scheduling in extended power system with two fuels in a unit and a limited fuel using Lagrangian relaxations. The underlying model incorporates the full set of costs and constraints including setup, production, ramping, and operational status, and takes the form of a mixed integer nonlinear control problem. Moreover, the mathematical model developed includes two fuels in a unit and a limited fuel, regulation reserve requirements of prespecified group of units. Lagrangian relaxation is used to disaggregate the model by generator into separate subproblems which are then solved with a nested dynamic program including empirical knowledges. The strength of the methodology lies partially in its ability to construct good feasible solutions from information provided by the dual. Thus, the need for branch-and-bound is eliminated. In addition, the inclusion of two fuels in a unit and a limited fuel provides new insight into the limitations of current techniques. Computational experience with the proposed algorithm indicates that Problems containing up to 23 units including 8 unit used two fuels and 24 time periods can be readily solved in reasonable times. Duality gaps of less than 4% were achieved.

  • PDF

A petri-net based execution model of processing equipment for CSCW-based shop floor control in agile manufacturing

  • Hong, Soondo;Cho, Hyuenbo;Jung, Mooyoung
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1995.04a
    • /
    • pp.193-200
    • /
    • 1995
  • A shop floor control system(SFCS), a central part of agile manufacturing, performs the production activities required to fill orders. In order to effectively control these activities, CSCW (computer supported cooperative work) is adopted where a supervisor does not exist. In this paper, we define functional perspective of CSCW-based shop floor control using planning, scheduling, and execution functions. In particular, we focus on an execution model that can coordinate the planning and scheduling functions. Execution can be defined informally as a function that downloads and performs a set of scheduled tasks. Execution is also responsible for identifying and resolving various errors whether they come from hardware or software. The purpose of this research is to identify all the execution activities and solving techniques under the assumptions of CSCW-based heterarchical control architecture. This paper also proposes a classification scheme for execution activities of CSCW-based heterarchical control architecture. Petri-nets are used as a unified framework for modeling and controlling execution activities. For solving the nonexistence of a supervisor, A negotiation-based solution technique is utilized.

  • PDF

Optimization of Job-Shop Schedule Considering Deadlock Avoidance (교착 회피를 고려한 Job-Shop 일정의 최적화)

  • Jeong, Dong-Jun;Lee, Du-Yong;Im, Seong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.2131-2142
    • /
    • 2000
  • As recent production facilities are usually operated with unmanned material-handling system, the development of an efficient schedule with deadlock avoidance becomes a critical problem. Related researches on deadlock avoidance usually focus on real-time control of manufacturing system using deadlock avoidance policy. But little off-line optimization of deadlock-free schedule has been reported. This paper presents an optimization method for deadlock-free scheduling for Job-Shop system with no buffer. The deadlock-free schedule is acquired by the procedure that generates candidate lists of waiting operations, and applies a deadlock avoidance policy. To verify the proposed approach, simulation resultsare presented for minimizing makespan in three problem types. According to the simulation results the effect of each deadlock avoidance policy is dependent on the type of problem. When the proposed LOEM (Last Operation Exclusion Method) is employed, computing time for optimization as well as makespan is reduced.

Design and Implementation of the 4D-Media Broadcasting Service System in a Smart TV Environment (스마트 TV 환경을 위한 4D 미디어 방송 서비스 시스템의 설계 및 구현)

  • Yun, Jae-Kwan;Kim, Min-Gi;Jang, Jong-Hyun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.7 no.1
    • /
    • pp.9-15
    • /
    • 2012
  • Recently, as the development of 3D contents service, production of 4D media that user can feel physical effects by the scene of movie has been increased. This 4D media uses the SMMD (Single Media Multiple Devices) method to give users enhanced effects with multiple devices playing rather than the SMSD (Single Media Single Device) method with single device playing in a smart TV environment. To give more sensible effects to users, from the beginning of making one media, we produced 4D media that consists of 3D contents and the SEM (Sensory Effect Metadata) to define effects of the scene. 4D media is transmitted to a HS (Home Server) to represent 3D contents in 3DTV and multiple devices with synchronized way. In this paper, we suggested the concept and overall 4D media broadcasting service system architecture, aggregator time acquisition, media time scheduling, real-sense device scheduling, evaluation results, user interfaces and implemented devices.

Parallel Machines Scheduling with Rate-Modifying Activities to Minimize Makespan (Rate-Modifying 활동이 있는 병렬기계의 Makespan 최소화를 위한 일정 계획)

  • Cho, Hang-Min;Yim, Seung-Bin;Jeong, In-Jae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.30 no.2
    • /
    • pp.44-50
    • /
    • 2007
  • This paper deals with the problem of scheduling jobs and rate-modifying activities on parallel machines. A rate-modifying activity is an activity that changes the production rate of equipment such as maintenance and readjustment. If a job is scheduled after the rate-modifying activity, then the processing time varies depending on the modifying rate of the activity. In this study, we extend the single machine problem to parallel machines problem and propose algorithms is to schedule the rate-modifying activities and jobs to minimize the makespan on parallel machines which is NP-hard. We propose a branch and bound algorithm with three lower bounds to solve medium size problems optimally. Also we develop three heuristics, Modified Longest Processing Time, Modified MULTIFIT and Modified COMBINE algorithms to solve large size problems. The test results show that branch and bound algorithm finds the optimal solution in a reasonable time for medium size problems (up to 15 jobs and 5 machines). For large size problem, Modified COMBINE and Modified MULTIFIT algorithms outperform Modified LPT algorithm in terms of solution quality.

Meta-Heuristic Algorithms for a Multi-Product Dynamic Lot-Sizing Problem with a Freight Container Cost

  • Kim, Byung-Soo;Lee, Woon-Seek
    • Industrial Engineering and Management Systems
    • /
    • v.11 no.3
    • /
    • pp.288-298
    • /
    • 2012
  • Lot sizing and shipment scheduling are two interrelated decisions made by a manufacturing plant and a third-party logistics distribution center. This paper analyzes a dynamic inbound ordering problem and shipment problem with a freight container cost, in which the order size of multiple products and single container type are simultaneously considered. In the problem, each ordered product placed in a period is immediately shipped by some freight containers in the period, and the total freight cost is proportional to the number of containers employed. It is assumed that the load size of each product is equal and backlogging is not allowed. The objective of this study is to simultaneously determine the lot-sizes and the shipment schedule that minimize the total costs, which consist of production cost, inventory holding cost, and freight cost. Because the problem is NP-hard, we propose three meta-heuristic algorithms: a simulated annealing algorithm, a genetic algorithm, and a new population-based evolutionary meta-heuristic called self-evolution algorithm. The performance of the meta-heuristic algorithms is compared with a local search heuristic proposed by the previous paper in terms of the average deviation from the optimal solution in small size problems and the average deviation from the best one among the replications of the meta-heuristic algorithms in large size problems.

Development of Integrated Assembly Process Planning and Scheduling System in Shipbuilding (조선에서의 조립공정계획과 일정계획의 지능형 통합시스템 개발)

  • Cho, Kyu-Kab;Ryu, Kwang-Ryel;Choi, Hyung-Rim;Oh, Jung-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.22-35
    • /
    • 1999
  • The block assembly process takes more than half of the total shipbuilding processes. Therefore, it is very important to have a practically useful block assembly process planning system which can build plans of maximum efficiency with minimum man-hours required. However, the process plans are often not readily executable in the assembly shops due to severe imbalance of workloads. This problem arises because the process planning is done on block by block basis in current practice without paying any attention to the load distribution among the assembly shops. this paper presents the development of an automated hull block assembly process planning system which results in the most effective use of production resources and also produces plans that enable efficient time management. If the load balance of assembly shops is to be considered at the time of process planning, the task becomes complicated because of the increased computational complexity. To solve this problem, a new approach is adopted in this research in which the load balancing function and process planning function are iterated alternately providing to each other contexts for subsequent improvement. The result of case study with the data supplied from the shipyard shows that the system developed in this research is very effective and useful.

  • PDF

Analysis of Workforce Scheduling Using Adjusted Man-machine Chart and Simulation (보완 다중 활동 분석표와 시뮬레이션을 이용한 작업자 운영 전략 분석)

  • Hyowon Choi;Heejae Byeon;Suhan Yoon;Bosung Kim;Soondo Hong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.47 no.1
    • /
    • pp.20-27
    • /
    • 2024
  • Determining the number of operators who set up the machines in a human-machine system is crucial for maximizing the benefits of automated production machines. A man-machine chart is an effective tool for identifying bottlenecks, improving process efficiency, and determining the optimal number of machines per operator. However, traditional man-machine charts are lacking in accounting for idle times, such as interruptions caused by other material handling equipment. We present an adjusted man-machine chart that determines the number of machines per operator, incorporating idleness as a penalty term. The adjusted man-machine chart efficiently deploys and schedules operators for the hole machining process to enhance productivity, where operators have various idle times, such as break times and waiting times by forklifts or trailers. Further, we conduct a simulation validation of traditional and proposed charts under various operational environments of operators' fixed and flexible break times. The simulation results indicate that the adjusted man-machine chart is better suited for real-world work environments and significantly improves productivity.

Development of Shipbuilding Execution Scheduling Support System using Mobile Device : A Case Study for a Panel Block Assembly Shop (모바일 기기를 활용한 조선 생산 실행계획 지원 시스템 개발 : 판넬라인 개발 사례를 중심으로)

  • Hwang, Inhyuck;Song, Jungkyu;Back, Myunggi;Ryu, Cheolho;Lee, Kwangkook;Shin, Jong Gye
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.4
    • /
    • pp.262-271
    • /
    • 2013
  • Owing to the development of mobile communication technology during the last a few years, the number of users of mobile devices such as the smartphone and the tablet PC has increased rapidly. As a result, the range of applications of the mobile devices has also been greatly expanded from an application for the convenience of daily life to an application for assisting the operations of industrial fields. Especially, portability of mobile devices can provide great help in collecting and using information on the production site. In shipbuilding production processes, it is difficult to collect changes of circumstance in the field and reflect the changes to schedule due to the low production automation rate and frequent changes in schedule. In this study, we propose a system to solve the problems of shipbuilding production processes such as the ones described above by using mobile devices. First of all, we organize the production information and production processes of the panel line through the analysis of shipyard panel line operations. Next, we have developed a system that can support the production execution plan of the panel line and monitor the production processes in the field. The system was developed utilizing application virtualization to allow access to the system from various platforms of mobile devices and PC's. The system was implemented using ooCBD methodology considering the future expansion of the system and ease of maintenance.

A Study on the Efficient Improvement of the Animatics for Animation Production in Education (애니메이션 교육을 위한 애니메틱스 제작의 효율적 방안 연구)

  • Hong, Il-Yang
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.9
    • /
    • pp.1391-1398
    • /
    • 2010
  • Animation is breathing life into drawings through motion. Animation is formed by the afterimage phenomenon, that is, deviation of sequential pictures in every frame makes a person possibly perceive it as a live video. Consequently, animation is mostly produced using traditional frame-by-frame methods. The study of relations on timing has been a major concern of animation theory. Nevertheless, issues of timing on production outcomes and effectiveness are mostly ignored. Special focus, analysis and leadership studies on timing are addressed on animatics. Creating better timing through animatics, that is writing movies, directing, scheduling and amending storyboard in pre-production stage, eventually shorten time to animation production. This research is centered on animatics as a cutting edge educational courses. This course will introduce students to the animation production skill and instructors to in-depth teaching points. One of the concepts that we want to go for is keeping animatics apart from mere storyboard. In conjunction with the animation theory, this research conducted under the focus of production of animatics will lead to more efficient way of education on animatics.