• 제목/요약/키워드: Production of Alternative Materials

검색결과 204건 처리시간 0.025초

스팀 플라즈마를 이용한 HFCs 분해특성 (Decomposition of HFCs using Steam Plasma)

  • 김관태;강희석;이대훈;이성진
    • 한국대기환경학회지
    • /
    • 제29권1호
    • /
    • pp.27-37
    • /
    • 2013
  • CFCs (Chlorofluorocarbons) and HCFCs (Hydrochlorofluorocarbons) that are chemically stable were proven to be a greenhouse gases that can destroy ozone layer. On the other hand, HFCs (Hydrofluorocarbons) was developed as an alternative refrigerant for them, but HFCs still have a relatively higher radiative forcing, resulting in a large Global Warming Potential (GWP) of 1,300. Current regulations prohibit production and use of these chemicals. In addition, obligatory removal of existing material is in progress. Methods for the decomposition of these material can be listed as thermal cracking, catalytic decomposition and plasma process. This study reports the development of low cost and high efficiency plasma scrubber. Stability of steam plasma generation and effect of plasma parameters such as frequency of power supply and reactor geometry have been investigated in the course of the development. Method for effective removal of by-product also has been investigated. In this study, elongated rotating arc was proven to be efficient in decomposition of HFCs above 99% and to be able to generate stable steam plasma with steam contents of about 20%.

Flux, Solder 및 Grease 세정용 CFC 대체 비수계 세정제 배합 연구 (Formulation of Alternative Non-Aqueous Cleaning Agents to Chlorofluorocarbon Compounds for Cleaning Flux, Solder and Grease)

  • 정용우;이호열;이명진;송아람;배재흠
    • 청정기술
    • /
    • 제12권4호
    • /
    • pp.250-258
    • /
    • 2006
  • CFC-113과 1,1,1-trichloroethane 등과 같은 CFC 화합물은 화학적 안정성 및 열역학적 특성 등이 우수하고, 불연성이며, 부식성이 없는 화합물로 오랜 시간 동안 전 산업에 걸쳐 널리 사용 되어 왔다. 하지만, 1989년 지구 환경의 보호를 위해 이들의 생산과 사용을 규제하는 국제협약인 '오존층 파괴물질에 관한 몬트리올 의정서'가 체결되어 대체 세정제가 요구되고 있다. 본 연구에서는 세정 시스템을 변화시키지 않고 세정력이 우수하면서 환경 친화적이며 인체 유해도가 낮으며 부식성 물질을 발생 시키지 않는 비수계 세정제를 개발하고자 하였다. 이를 위하여 글리콜 에테르계의 용매와 파라핀계 탄화수소 물질을 일정 비율로 혼합, 배합하면서 실록산을 첨가하여 비수계 세정제를 배합 제조하였다. 그리고 이들 세정제의 물성과 세정성을 평가하여 대체 세정제로서의 가능성을 평가하였다. 배합세정제의 물성측정 결과 밀도와 표면장력이 낮아 오염물에 대한 침투력이 우수할 것으로 예상되었고 인화점과 증기압 측정값으로 세정제의 안전성을 평가할 수 있었다. 플럭스, 솔더 및 그리스에 대한 세정성능 측정결과 높은 세정성능을 보여주었고 피세정물의 표면에 잔류물이 생성되지 않았다. 결과적으로, 규제물질과 동등한 세정능력을 지니며 침투력이 우수하고 인체 유해도가 낮은 세정제를 개발할 수 있었다.

  • PDF

Recent progress in supported liquid membrane technology: stabilization and feasible applications

  • Molinari, Raffaele;Argurio, Pietro
    • Membrane and Water Treatment
    • /
    • 제2권4호
    • /
    • pp.207-223
    • /
    • 2011
  • Supported Liquid Membranes (SLMs) have been widely studied as feasible alternative to traditional processes for separation and purification of various chemicals both from aqueous and organic matrices. This technique offers various advantages like active transport, possibility to use expensive extractants, high selectivity, low energy requirements and minimization of chemical additives. SLMs are not yet used at large scale in industrial applications, because of the low stability. In the present paper, after a brief overview of the state of the art of SLM technology the facilitated transport mechanisms of SLM based separation is described, also introducing the small and the big carrousel models, which are employed for transport modeling. The main operating parameters (selectivity, flux and permeability) are introduced. The problems related to system stabilization are also discussed, giving particular attention to the influence of membrane materials (solid membrane support and organic liquid membrane (LM) phase). Various approaches proposed in literature to enhance SLM stability are also reviewed. Modification of the solid membrane support, creating an additional layer on membrane surface, which acts as a barrier to LM phase loss, increases system stability, but the membrane permeability, and then the flux, decrease. Stagnant Sandwich Liquid Membrane (SSwLM), an implementation of the SLM system, results in both high flux and stability compared to SLM. Finally, possible large scale applications of SLMs are also reviewed, evidencing that if the LM separation process is opportunely carried out (no production of byproducts), it can be considered as a green process.

The impact of corrosion on marine vapour recovery systems by VOC generated from ships

  • Choi, Yoo Youl;Lee, Seok Hee;Park, Jae-Cheul;Choi, Doo Jin;Yoon, Young Soo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권1호
    • /
    • pp.52-58
    • /
    • 2019
  • Marine emissions of Volatile Organic Compounds (VOCs) have received much attention because the International Maritime Organization (IMO) requires the installation of vapour emission control systems for the loading of crude oils or petroleum products onto ships. It was recently recognised that significant corrosion occurs inside these vapour emission control systems, which can cause severe clogging issues. In this study, we analysed the chemical composition of drain water sampled from currently operating systems to investigate the primary causes of corrosion in vapour recovery systems. Immersion and electrochemical tests were conducted under simulated conditions with various real drain water samples, and the impact of corrosion on the marine vapour recovery system was carefully investigated. Moreover, corrosion tests on alternative materials were conducted to begin identifying appropriate substitutes. Thermodynamic calculations showed the effects of environmental factors on the production of condensed sulphuric acid from VOC gas. A model of sulphuric acid formation and accumulation by the characteristics of VOC from crude oil and flue gas is suggested.

Assessment of concrete properties with iron slag as a fine aggregate replacement

  • Noufal, E. Rahmathulla;Kasthurba, A.K.;Sudhakumar, J.;Manju, Unnikrishnan
    • Advances in concrete construction
    • /
    • 제9권6호
    • /
    • pp.589-596
    • /
    • 2020
  • In an effort to find alternate, environment friendly and sustainable building materials, the scope of possible utilization of iron slag (I-sand), generated as a by-product in iron and steel industries, as fine aggregates in reinforced cement concrete (RCC) made with manufactured sand (M-sand) is examined in this manuscript. Systematic investigations of the physical, mechanical, microstructural and durability properties of I-sand in comparison with RCC made with M-sand have been carried out on various mix designs prepared by the partial/full replacement of I-sand in M-sand. The experimental results clearly indicate the possibility of utilizing iron slag for preparing RCC in constructions without compromising on the property of concrete, durability and performance. This provides an alternate possibility for the effective utilization of industrial waste, which is normally disposed by delivering to landfills, in building materials which can reduce the adverse environmental effects caused by indiscriminate sand mining being carried out to meet the growing demands from construction industry and also provide an economically viable alternative by reducing the cost of concrete production.

화약제조 공정의 초임계 유체 응용 (Application of Supercritical Fluid in Energetic Materials Processes)

  • 송은석;김화용;김현수;이윤우
    • 한국군사과학기술학회지
    • /
    • 제9권3호
    • /
    • pp.77-87
    • /
    • 2006
  • Micro- or nano-size particles are required to improve the combustion efficiency and stability in the case of solid explosives and propellants. The micro-structural properties of an energetic material strongly influence the combustion and explosion behavior. However, the traditional size reduction techniques, including milling, are not suitable for production of ultra-fine size particles. As an alternative to the traditional techniques, various re-crystallization processes based on supercritical fluids have recently been proposed. Supercritical fluids are fluids at temperatures and pressures above their critical point. In principle, they do not give problems of solvent contamination as they are completely released from the solute when the decompression occurs. Rapid Expansion Supercritical Solutions(RESS) and Supercritical Anti-Solvent Process(GAS/SAS) are representatives of a nano-size particle formation process of energetic materials using supercritical fluids. In this work, various fine particle formation processes using supercritical fluids are discussed and the results are presented.

포공영(민들레)의 동치미 발효에 의한 간세포 보호 및 면역증진 효과 (Effects of fermented Taraxacum mongolicum by Dongchimi on protection of liver cell and immune activity)

  • 최복수;김혜자
    • 대한예방한의학회지
    • /
    • 제18권1호
    • /
    • pp.11-21
    • /
    • 2014
  • Objective : This study set out to combine the treatment efficacy of Taraxacum with Dongchimi fermentation and investigate Taraxacum's effects on protection of liver cell and controlling nitric oxide(NO) through experiments, thus checking whether it had values as a physiological active matter. The experimental materials include Taraxacum Dongchimi (TD) and Taraxacum fermented by Dongchimi (TDF). As for methodology, experiments were carried out to compare TD and TDF in components, protection effects for liver cells, anticancer effects on liver cells, and protection effects for brain cells in the aspects of liver function and immunity enhancement. Method : The experimental materials include Taraxacum Dongchimi (TD) and Taraxacum fermented by Dongchimi (TDF). As for methodology, experiments were carried out to compare TD and TDF in components, protection effects for liver cells, anti-cancer effects on liver cells, and protection effects for brain cells in the aspects of liver function and immunity enhancement. Results : As shown in the chromatogram results, each valid component content increased in Taraxacum fermented by Dongchimi (TDF) for each time section. Of them, the valid component content at 36.80 minutes was approximately 2.7 times higher in TDF at 21.8% than in Taraxacum Dongchimi (TD) at 8.28%. TDF generated more excellent protection effects against the toxicity that caused oxidative damage to the liver cell(HepG2) with t-BHP than TD. The survival rate was low in TD of $100{\mu}g/m{\ell}$ and $300{\mu}g/m{\ell}$ and increased to 23.3% in TDF of $100{\mu}g/m{\ell}$. The survival rate was the highest at $300{\mu}M$ with a significant difference of 68.1%(P<0.05). Both TD and TDF showed effects of controlling nitric oxide production according to concentration with TDF recording a higher rate of controlling nitric oxide production than TD. There were significant differences(P<0.05) in the effects of controlling nitric oxide production at 200 ug/ml, 400 ug/ml in both groups. Especially the result TDF of $400{\mu}g/m{\ell}$ was thus similar to those of butein, the positive control group. Conclusion : The result of this studies is that Taraxacum fermented by Dongchimi (TDF) increased the valid component content compared with the simple mixture(TD). The findings clearly show that it is a material with the effects of improving immunity and liver cell protection. If fermentation methods are further developed to use it as a functional material, it will be subject to more opportunities of being used in other functional foods and make a contribution to integrated medicinal food development.

폐도자기를 활용한 도자기 유약 개발 (Development of ceramic glazes utilizing wasted porcelains)

  • 이제일;이병하
    • 한국결정성장학회지
    • /
    • 제21권2호
    • /
    • pp.87-91
    • /
    • 2011
  • 본 연구에서는 우리나라의 도자기 제조업체가 밀집되어 있는 경기도 이천, 여주 지역에서 발생되는 백자, 청자, 본차이나 폐도자기를 도자기 유약용 원료로서 재활용하여 도자기 제조에 적합한 도자기 유약를 개발해 보고자 한다. 연구결과, 폐백자분에는 규석이 많이 함유되어 있어서 규석을 사용하지 않고서도 맑고 투명한 백자 유약을 만들 수 있다. 또한 폐청자분에는 $Fe_2O_3$이 많이 함유되어 있어서 청자유약제조에 적합하였다. 폐본차이나분에는 $P_2O_5$이 많이 함유되어 있어서 부드러운 느낌의 유백유약제조에 적합하였다. 이와같이 폐도자기를 사용하여 도자기 유약를 제조함에 의해 매립에 의해 발생되는 환경 문제를 해결함과 동시에 자원의 재활용, 특히 일부 수입되고 있는 도자기 원료의 대체원료로서의 활용도 기대되어 경제적 효과도 얻을 수 있을 것으로 판단된다.

중일전쟁 이후 일제의 금속자원 통제와 건축자재 대용품 개발 (Control of metal resources and development of substitute materials for building materials by Japan after the Second Sino-Japanese War)

  • 홍경화;한동수
    • 건축역사연구
    • /
    • 제31권4호
    • /
    • pp.7-16
    • /
    • 2022
  • Since the beginning of the second Sino-Japanese war in 1937, the entire Korean Peninsula has entered a full-fledged wartime system. Japan enacted laws that strongly regulate the distribution of various resources for war, and the same was implemented in Joseon. In particular, as iron, copper, lead, tin, and aluminum were mobilized as raw materials for military supplies such as weapons, private distribution decreased significantly, which had a great impact on the construction industry. As the use of metal such as steel as building materials requires permission from the provincial governor, it has become difficult to supply and demand except for some military facilities. In addition, the Japanese Ministry of Commerce and Industry encouraged research and development and manufacturing to promote the so-called "substitute goods industry" to make up for the shortage of supplies. Products with improved performance through chemical treatment by injecting only a small amount of the same raw material than before or using alternative raw materials have been developed. It was intended to overcome the limitations of lack of raw materials through the chemical industry. In terms of building materials, various substitutes were produced due to the incorporation of petrochemicals and the use of synthetic resins. This trend continued even after the end of the war and served as one of the backgrounds for R&D and production of new materials without returning to the "substitute goods."

올레핀(Olefin) 생산 공정에서 발생하는 이산화탄소 배출 저감을 위한 신기술 적용 효과 (Contribution of Advanced or Alternative Process to Carbon-Dioxide Emission Reduction in Olefin Production Plant)

  • 위정호;최경식;김정인;이상훈
    • 대한환경공학회지
    • /
    • 제31권8호
    • /
    • pp.679-689
    • /
    • 2009
  • 플라스틱에서부터 의약품에 이르기까지 대부분 일상 제품의 핵심적 기초 원료가 되는 경질올레핀은 한 국가의 경제규모와 성장을 예측할 수 있는 중요한 지표이다. 이러한 경질올레핀을 생산하는 NCC (Naphtha Cracking Center) 기술은 석유 관련 기간산업 중에서 가장 많은 에너지를 소비하는 공정으로 다량의 $CO_2$를 발생 시킨다. 본 연구에서는 다량으로 방출되는 $CO_2$를 감축, 저감시킬 수 있는 새로운 NCC 공정의 기술 수준과 개발 현황 및 기술 적용 가능성을 검토하였으며, 새로운 기술이 적용될 경우 $CO_2$ 저감 효과 및 그에 따른 탄소배출권, 그리고 에너지 절감양 등을 정량적으로 산출 하였다. 그 결과 고급 NCC 기술을 적용하면 기존 NCC 공정의 총 에너지 소비량의 약 35%를 줄일 수 있어 연간 약 330만톤의 $CO_2$ 감축과, 약 1,280억원의 탄소배출권 및 중유 약 152만 kL를 줄일 수 있다. 또한 촉매 접촉 분해 기술을 적용하면 연간 최대 약 380만톤의 $CO_2$를 저감할 수 있고 1,470억원 규모의 탄소배출권 및 약 174만 kL의 중유 소비를 줄 일 수 있다.