• Title/Summary/Keyword: Production of Alternative Materials

Search Result 204, Processing Time 0.024 seconds

Starter Cultures for Kimchi Fermentation

  • Lee, Mo-Eun;Jang, Ja-Young;Lee, Jong-Hee;Park, Hae-Woong;Choi, Hak-Jong;Kim, Tae-Woon
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.5
    • /
    • pp.559-568
    • /
    • 2015
  • Kimchi is a traditional Korean vegetable product that is naturally fermented by various microorganisms present in the raw materials. Among these microorganisms, lactic acid bacteria dominate the fermentation process. Natural fermentation with unsterilized raw materials leads to the growth of various lactic acid bacteria, resulting in variations in the taste and quality of kimchi, which may make it difficult to produce industrial-scale kimchi with consistent quality. The use of starter cultures has been considered as an alternative for the industrial production of standardized kimchi, and recent trends suggest that the demand for starter cultures is on the rise. However, several factors should be carefully considered for the successful application of starter cultures for kimchi fermentation. In this review, we summarize recent studies on kimchi starter cultures, describe practical problems in the application of industrial-scale kimchi production, and discuss the directions for further studies.

Study of Rice Husk Pulping for utilization of Rice Husk Fiber (왕겨섬유 활용을 위한 왕겨 펄프화 연구)

  • Oh, Min-Taek;Sun, Yong-Joo
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.3
    • /
    • pp.63-69
    • /
    • 2012
  • The rice husk is one of the major agricultural residue in KOREA. In this paper, the effects of various pulping conditions on the properties of rice husk pulp and handsheets made of rice husk fiber were evaluated in order to utilize the rice husk as an alternative source for wood pulp. Two typical alkali pulping, such as soda pulping and Kraft pulping were applied with various conditions of the pulping processes. The higher effective alkali and higher pulping temperature resulted in the higher efficiency in removal of lignin and ash, which leaded to the higher strength properties of handsheets made of rice husk fiber, but the lower yield of rice husk pulp. The better efficiency in production of rice husk pulp and the stronger handsheets were obtained by the Kraft pulping.

Membrane engineering for environmental protection and sustainable industrial growth: Options for water and gas treatment

  • Brunetti, Adele;Macedonio, Francesca;Barbieri, Giuseppe;Drioli, Enrico
    • Environmental Engineering Research
    • /
    • v.20 no.4
    • /
    • pp.307-328
    • /
    • 2015
  • The increasing demand for materials, energy and products drives chemical engineers to propose new solutions everyday able to promote development while supporting sustainable industrial growth. Membrane engineering can offer significant assets to this development. Here, they are identified the most interesting aspects of membrane engineering in strategic industrial sectors such as water treatment, energy production and depletion and reuse of raw materials. The opportunity to integrate membrane units with innovative systems to exploit the potential advantages derived from their synergic uses is also emphasized. The analysis of the potentialities of these new technologies is supported by the introduction of process intensification metrics which provide an alternative and innovative point of view regarding the unit performance, highlighting important aspects characterizing the technology and not identified by the conventional analysis of the unit performance.

A Study on the Chloride Diffusivity of Recycled Aggregate Concrete (순환골재 콘크리트의 염화물 확산성에 관한 연구)

  • Bae, Jong-Min;Kim, Young-Su
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.87-91
    • /
    • 2009
  • Recycling demolished concrete as an alternative source of coarse aggregates for the production of new concrete can help solve the growing waste disposal crisis and the problem of depleted natural aggregates. The purpose of this study is to investigate chloride migration of recycled aggregate concrete containing pozzolanic materials by chloride migration coefficient. The specimens were made with recycled coarse aggregate as various replacement ratio(10, 30, 50%) and metakaolin, blast furnace slag, fly ash is replaced for recycled concrete with mixing ratio 20%. The major results are as follows. 1) Compressive strength of recycled aggregate concrete containing pozzolanic materials increase as curing age and chloride migration decrease. 2) When the replacement ratio of recycled coarse aggregate is 30%, the chloride migration coefficient of recycled concrete containing blast furnace slag, metakaolin shows the similar or lower value than plain concrete at all ages.

  • PDF

A Study on Tribological Characteristics of Sintered Fe-base Low Alloy Powder for Automobile Parts (자동차 부품용 Fe계 저합금 분말 소결품의 마찰마모 특성 연구)

  • Kim, Tae-Hyun;Kim, Sang-Youn;Kim, Tae-Gyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.139-144
    • /
    • 2012
  • In the automobile industry, the various efforts to lower their industrial cost and enhance fuel efficiency have been made through process improvement or weight saving of automobile parts. Gear is one of significant parts of transmission, which is made by cast iron or alloy steel. It is expensive due to complex processing, inferior materials and large machining allowance. In this study, alternative gear cars oil which is based on fluid applications materials is produced by reducing surface induction hardening and carburizing hardened in production. And then, wear characteristic and mechanical properties such as hardness of the sintered alloy which is used as a substitute for small machining allowance is investigated.

Development of a Rice Seed Pelleting Machine for Direct Seeding in Rice Cultivation (직파용 벼 펠렛종자 제조장치 개발)

  • 박종수;유수남;최영수;유대성
    • Journal of Biosystems Engineering
    • /
    • v.27 no.5
    • /
    • pp.381-390
    • /
    • 2002
  • Direct seeding of rice-seed pellets is expected to be an alternative for solving problems in current direct seeding cultivation of rice. but mass production of rice-seed pellets is prerequisite for practical application. Design. construction and performance evaluation of an experimental rice seed pelleting machine were carried out for mass production of rice-seed pellets. The pelleting machine intended to make a ball type rice-seed pellet, which have 3∼5 rice seeds and diameter of which is 12 mm. Pellet materials ; rice seeds, soil, and binder were mixed and kneaded by the mixer. The designed rice seed pelleting machine fed pellet materials by screw conveyor to forming rolls and made rice-seed pellets. Capacity, ratio of perfect rice-seed pellets, seed and pellet material loss were investigated as mixing ratio of soil to rice seed and feeding rate of pellet materials. The pelleting machine showed up to 37,000 pellets/h of pelleting rate, 61∼71% of weight ratio of perfect rice-seed pellets to pellet materials supplied, 17∼48% of seed loss ratio. Average weight and average diameter of the pellets were 1.66 g and 12.0 mm. respectively. More than 3 rice seeds were included in most pellets at 6 : 1 of mixing ratio of soil to rice seed. And compression strength of the pellets was in the range of 88-130 N. To improve performance of the pelleting machine, improvements of the forming rolls, feeding mechanism, and discharging mechanism for reducing loss of pellet materials and seeds damage are needed.

Highly Sensitive Gas Sensors Based on Nanostructured $TiO_2$ Thin Films

  • Jang, Ho-Won;Mun, Hui-Gyu;Kim, Do-Hong;Sim, Yeong-Seok;Yun, Seok-Jin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.16.1-16.1
    • /
    • 2011
  • $TiO_2$ is a promising material for gas sensors. To achieve high sensitivities, the material should exhibit a large surface-to-volume ratio and possess the high accessibility of the gas molecules to the surface. Accordingly, a wide variety of porous $TiO_2$ nanomaterials synthesized by wet-chemical methods have been reported for gas sensor applications. Nonetheless, achieving the large-area uniformity and comparability with well-established semiconductor production processes of the methods is still challenging. An alternative method is soft-templating which utilizes nanostructured inorganic or organic materials as sacrificial templates for the preparation of porous materials. Fabrication of macroporous $TiO_2$ films and hollow $TiO_2$ tubes by soft-templating and their gas sensing applications have been reported recently. In these porous materials composed of assemblies of individual micro/nanostructures, the form of links or necks between individual micro/nanostructures is a critical factor to determine gas sensing properties of the material. However, a systematic study to clarify the role of links between individual micro/nanostructures in gas sensing properties of a porous metal oxide matrix is thoroughly lacking. In this work, we have demonstrated a fabrication method to prepare highly-ordered, embossed $TiO_2$ films composed of anatase $TiO_2$ hollow hemispheres via soft-templating using polystyrene beads. The form of links between hollow hemispheres could be controlled by $O_2$ plasma etching on the bead templates. This approach reveals the strong correlation of gas sensitivity with the form of the links. Our experimental results highlight that not only the surface-to-volume ratio of an ensemble material composed of individual micro/nanostructures but also the links between individual micro/nanostructures play a critical role in evaluating the sensing properties of the material. In addition to this general finding, the facileness, large-scale productivity, and compatability with semiconductor production process of the proposed fabrication method promise applications of the embossed $TiO_2$ films to high-quality sensors.

  • PDF

Quality Improvement of Crude Glycerol from Biodiesel Production Using Activated Carbon Derived from Krabok (Irvingia malayana) Seed Shells

  • Wuttichai Roschat;Sarunya Donrussamee;Phatcharanan Smanmit;Samlit Jikjak;Tappagorn Leelatam;Sunti Phewphong;Krittiyanee Namwongsa;Preecha Moonsin;Vinich Promarak
    • Korean Journal of Materials Research
    • /
    • v.34 no.1
    • /
    • pp.1-11
    • /
    • 2024
  • This research investigated the preparation of activated carbon derived from Krabok (Irvingia malayana) seed shells to improve the quality of crude glycerol obtained during biodiesel production. The activated carbon was prepared using a dry chemical activation method with NaOH, utilizing an innovative biomass incinerator. The results revealed that the resulting KC/AC-two-step exhibited favorable physicochemical adsorption properties, with a high surface area of 758.72 m2/g and an iodine number of 611.10 mg/g. These values meet the criteria of the industrial product standard for activated carbon No. TIS 900-2004, as specified by the Ministry of Industry in Thailand. Additionally, the adsorption efficiency for methylene blue reached an impressive 99.35 %. This developed activated carbon was then used to improve the quality of crude glycerol obtained from biodiesel production. The experimental results showed that the KC/AC-two-step increased the purity of crude glycerol to 73.61 %. In comparison, commercially available activated carbon (C/AC) resulted in a higher crude glycerol purity of 81.19 %, as analyzed by the GC technique. Additionally, the metal content (Zn, Cu, Fe, Pb, Cd, and Na) in purified glycerol using KC/AC-two-step was below the standards for heavy metals permitted in food and cosmeceuticals by the Food and Drug Administration of Thailand and the European Committee for Food Contact Materials and Articles. As a result, it can be inferred that Krabok seed shells have favorable properties for producing activated carbon suitable as an adsorbent to enhance crude glycerol purity. Furthermore, the improved crude glycerol from this research has potential for various industrial applications.

A Study on CNN based Production Yield Prediction Algorithm for Increasing Process Efficiency of Biogas Plant

  • Shin, Jaekwon;Kim, Jintae;Lee, Beomhee;Lee, Junghoon;Lee, Jisung;Jeong, Seongyeob;Chang, Soonwoong
    • International journal of advanced smart convergence
    • /
    • v.7 no.1
    • /
    • pp.42-47
    • /
    • 2018
  • Recently, as the demand for limited resources continues to rise and problems of resource depletion rise worldwide, the importance of renewable energy is gradually increasing. In order to solve these problems, various methods such as energy conservation and alternative energy development have been suggested, and biogas, which can utilize the gas produced from biomass as fuel, is also receiving attention as the next generation of innovative renewable energy. New and renewable energy using biogas is an energy production method that is expected to be possible in large scale because it can supply energy with high efficiency in compliance with energy supply method of recycling conventional resources. In order to more efficiently produce and manage these biogas, a biogas plant has emerged. In recent years, a large number of biogas plants have been installed and operated in various locations. Organic wastes corresponding to biogas production resources in a biogas plant exist in a wide variety of types, and each of the incoming raw materials is processed in different processes. Because such a process is required, the case where the biogas plant process is inefficiently operated is continuously occurring, and the economic cost consumed for the operation of the biogas production relative to the generated biogas production is further increased. In order to solve such problems, various attempts such as process analysis and feedback based on the feedstock have been continued but it is a passive method and very limited to operate a medium/large scale biogas plant. In this paper, we propose "CNN-based production yield prediction algorithm for increasing process efficiency of biogas plant" for efficient operation of biogas plant process. Based on CNN-based production yield forecasting, which is one of the deep-leaning technologies, it enables mechanical analysis of the process operation process and provides a solution for optimal process operation due to process-related accumulated data analyzed by the automated process.

Combined Heat Treatment Characteristics of Cast Iron for Mold Materials (금형재료용 주철강의 복합열처리 특성)

  • Hwang, Hyun-Tae;So, Sang-Woo;Kim, Jong-Do
    • Korean Journal of Materials Research
    • /
    • v.21 no.7
    • /
    • pp.364-370
    • /
    • 2011
  • Currently, there are two main issues regarding the development of core technologies in the automotive industry: the development of environmentally friendly vehicles and securing a high level of safety in the event of an accident. As part of the efforts to address these issues, research into alternative materials and new car body manufacturing and assembly technologies is necessary, and this has been carried out mainly by the automotive industries. Large press molds for producing car body parts are made of cast iron. With the increase of automobile production and various changes of design, the press forming process of car body parts has become more difficult. In the case of large press molds, high hardness and abrasive resistance are needed. To overcome these problems, we attempted to develop a combined heat treatment process consisting of local laser heat treatment followed by plasma nitriding, and evaluated the characteristics of the proposed heat treatment method. From the results of the experiments, it has been shown that the maximum surface hardness is 864 Hv by the laser heat treatment, 953 Hv by the plasma nitriding, and 1,094 Hv by the combined heat treatment. It is anticipated that the suggested combined heat treatment can be used to evaluate the durability of press mold.