• Title/Summary/Keyword: Production lead time analysis

Search Result 94, Processing Time 0.026 seconds

Machine Learning Methodology for Management of Shipbuilding Master Data

  • Jeong, Ju Hyeon;Woo, Jong Hun;Park, JungGoo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.428-439
    • /
    • 2020
  • The continuous development of information and communication technologies has resulted in an exponential increase in data. Consequently, technologies related to data analysis are growing in importance. The shipbuilding industry has high production uncertainty and variability, which has created an urgent need for data analysis techniques, such as machine learning. In particular, the industry cannot effectively respond to changes in the production-related standard time information systems, such as the basic cycle time and lead time. Improvement measures are necessary to enable the industry to respond swiftly to changes in the production environment. In this study, the lead times for fabrication, assembly of ship block, spool fabrication and painting were predicted using machine learning technology to propose a new management method for the process lead time using a master data system for the time element in the production data. Data preprocessing was performed in various ways using R and Python, which are open source programming languages, and process variables were selected considering their relationships with the lead time through correlation analysis and analysis of variables. Various machine learning, deep learning, and ensemble learning algorithms were applied to create the lead time prediction models. In addition, the applicability of the proposed machine learning methodology to standard work hour prediction was verified by evaluating the prediction models using the evaluation criteria, such as the Mean Absolute Percentage Error (MAPE) and Root Mean Squared Logarithmic Error (RMSLE).

A Study on the Design of Economic Production Quantity Model with Partial Backorders (부분부재고를 갖는 경제적 생산량모형의 설계에 관한 연구)

  • 이강우;이꾸따세이조
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.18 no.36
    • /
    • pp.93-103
    • /
    • 1995
  • This paper des with an economic production quantity model with partial backorders for the situation in which production lead time is deterministic and demand during lead time follows a continuous distribution. In the model, an objective function is formulated In minimize an average annual inventory cost. And then the procedure of iterative solution method for the model is developed to find both production reorder point and production quantity. Finally, sensitivity analysis for various partial backorder ratios and standard deviations of demand during production lead time are presented.

  • PDF

Lead time analysis for transportation mode decision making (수송수단의 선택을 위한 리드타임 분석)

  • 문상원
    • Korean Management Science Review
    • /
    • v.13 no.1
    • /
    • pp.47-55
    • /
    • 1996
  • Rapid globalization of production and marketing functions makes choice of international transportation mode of great importance. In this paper, transportation mode is characterized by two factors, mean and variability of transportation lead time. We developed a simple mathematical model to estimate the relative impact of mean lead time, lead time variance and demand variance on the required average inventory level under specified service rates.

  • PDF

Lead Time Analysis for Transportation Mode Decision Making (輸送手段의 選擇을 위한 리드타임 分析)

  • 문상원
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.13 no.1
    • /
    • pp.47-47
    • /
    • 1988
  • Rapid globalization of production and marketing functions makes choice of international transportation mode of great importance. In this paper, transportation mode is characterized by two factors, mean and variability of transportation lead time. We developed a simple mathematical model to estimate the relative impact of mean lead time, lead time variance and demand variance on the required average inventory level under specified service rates.

Development of an Analysis Tool for Production Time for Components Machined by Turning (선삭 가공 부품의 생산 시간 분석 툴 개발)

  • Jin-Woo Choi
    • Design & Manufacturing
    • /
    • v.18 no.2
    • /
    • pp.51-56
    • /
    • 2024
  • In this study, a tool was developed for analyzing production lead time in turning operations. It is expected to help to reduce machining time and to identify, for example, tool change intervals. The tool was developed using Visual Basic.Net and features a user-friendly graphical user interface (GUI) that allows users to easily input cutting conditions and calculate the usage time and feeding distance for each cutting tool based on a G-code program. Object-oriented programming techniques were also used to encapsulate and classify complex logic, thereby efficiently organizing and managing the functions and data structures of this analysis tool. The analysis tool provides various outputs. It calculates the use time of each detailed process of the turning operation, the use time of each tool, the use time of each type of feeding, and also generates the data needed for cutting time analysis, which can be visualized in charts. The analysis tool developed in this study is expected to significantly contribute to improving the efficiency of manufacturing processes and increasing productivity, particularly, in the manufacturing of components requiring massive material removal, such as aircraft parts.

A Case Study on Lead Time Improvement Using a Simulation Approach (시뮬레이션 방식을 이용한 리드 타임 개선 사례 연구)

  • Ro, Wonju;Sim, Jaehun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.2
    • /
    • pp.140-152
    • /
    • 2021
  • During the shift from gasoline vehicles to electric ones, auto parts manufacturing companies have realized the importance of improvement in the manufacturing process that does not require any layout changes nor extra investments, while maintaining their current production rate. Due to these reasons, for the auto part manufacturing company, I-company, this study has developed the simulation model of the PUSH system to conduct a process analysis in terms of production rate, WIP level, and logistics work's utilization rate. In addition, this study compares the PUSH system with other three manufacturing systems -KANBAN, DBR, and CONWIP- to compare the performance of these production systems, while satisfying the company's target production rate. With respect to lead-time, the simulation results show that the improvement of 77.90% for the KANBAN system, 40.39% for the CONWIP system, and 69.81% for the DBR system compared to the PUSH system. In addition, with respect to WIP level, the experimental results demonstrate that the improvement of 77.91% for the KANBAN system, 40.41% for the CONWIP system, and 69.82% for the DBR system compared to the PUSH system. Since the KANBAN system has the largest impacts on the reduction of the lead-time and WIP level compared to other production systems, this study recommends the KANBAN system as the proper manufacturing system of the target company. This study also shows that the proper size of moving units is four and the priority allocation of bottleneck process methods improves the target company's WIP and lead-time. Based on the results of this study, the adoption of the KANBAN system will significantly improve the production process of the target company in terms of lead-time and WIP level.

Production Scheduling employing ERP in the make-to-order manufacturing system (주문생산 방식하에서 ERP를 응용한 일정계획 수립 사례 연구)

  • Lee, Soon-Ku;Lee, Young-Hoon
    • IE interfaces
    • /
    • v.12 no.3
    • /
    • pp.424-436
    • /
    • 1999
  • Due to environmental change in market, delivery satisfaction to customers and reduction of lead time are critical in the make-to-order manufacturing system. A case of production scheduling process restructuring is studied for one company which employed ERP system. Based on the standard module ERP package provided, they modified and added several functions for their specific processes, and implemented it in production scheduling. The ratio of delivery satisfaction has been improved from 51.1% to 60.8%, and manufacturing lead time has been reduced from 43 days to 30 days in average during 10 months. Moreover, they achieved several side effects such as real time production scheduling and workload analysis, information sharing over all departments, and improving flexibility in receiving orders.

  • PDF

A Simulation Analysis on the Assembly System of Mobile Bath Vehicles (이동식 목욕차량의 조립시스템에 대한 시뮬레이션 분석)

  • Chung, Hoyeon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.2
    • /
    • pp.93-101
    • /
    • 2021
  • The purpose of this study is to analyze the adequacy of production capacity of the assembly process system of mobile bath vehicle's top box panel and process design through a simulation analysis. Towards this end, the layout of the facility designed with pre-verification job using a simulation modeling and an experiment, and facility, logistics process, and personnel input method were made into a simulation model, and the design system's adequacy was evaluated through an experiment. To produce 120 mobile bath vehicles annually, it was analyzed that 14 general workers and seven skilled workers were adequate through the experiment. It was also identified that three painting process lines carried out through outsourcing were adequate. Production lead time was 201.7 hours on average and it was 230 hours maximum. To meet customer delivery service level of 95% within the deadline when establishing a customer order and vehicle delivery plan, it was analyzed that more than 215 hours of lead time is needed minimum. If the process cycle time is reduced to 85% upon system stabilization and skillfulness improvement, it was analyzed that annual output of 147 vehicles can be achieved without additional production line expansion.

Analysis and survey of design decision making process in steel production process

  • Furukawa, Satoru;Yoshida, Tomohiro;Chi, Naiyuan;Okamoto, Hiroyuki;Furusaka, Shuzo
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.30-37
    • /
    • 2020
  • In the building construction, the steel-frame work occupies an important position in terms of structure, cost and quality. Especially in Japan, steel frames have traditionally been the main structure of many buildings. For steel-frame works in such positions, this paper investigates an existing steel fabricator to clarify the actual conditions of design decision making process and management method in steel production process. This study focuses on a steel fabricator (Company M in the following sentences), whose main market is Japan and which has facilities in Thailand, China, and Japan. Company M uses QR codes to control the production status of products, and exchanges all information between inside and outside the company via specialized departments in the form of documents. The authors have already analyzed the relationship between production lead time and defect rate based on actual project data at Architectural Institute of Japan in 2016. In 2019, we expressed the process from the confirmation of the design information of the current steel frame to the production by WBS, and clarified the relationship between the production lead time and steel frame product quality structurally. In this paper, the authors reoport the progress of the survey conducted so far, the positioning of the collected data, and the future survey policy.

  • PDF

Integrated Simulation Modeling of Business, Maintenance and Production Systems for Concurrent Improvement of Lead Time, Cost and Production Rate

  • Paknafs, Bahman;Azadeh, Ali
    • Industrial Engineering and Management Systems
    • /
    • v.15 no.4
    • /
    • pp.403-431
    • /
    • 2016
  • The objective of this study is to integrate the business, maintenance and production processes of a manufacturing system by incorporating errors. First, the required functions are estimated according to the historical data. The system activities are simulated by Visual SLAM software and the required outputs are obtained. Several outputs including lead times in different dimensions, total cost and production rates are computed through simulation. Finally, data envelopment analysis (DEA) is utilized in order to select the best option between the defined scenarios due to the multi-criteria feature of the problem. This is the first study in which the lead times, cost and production rates are simultaneously considered in the integrated system imposed of business, maintenance and production processes by incorporating errors. In the current study, the major bottlenecks of the system being studied are identified and suggested different strategies to improve the system and make the best decision.