• Title/Summary/Keyword: Production cross section

Search Result 137, Processing Time 0.024 seconds

Computational simulation of intelligent big data analysis under nanotube rotation

  • Lunan Li;Allam Maalla
    • Advances in nano research
    • /
    • v.14 no.1
    • /
    • pp.67-80
    • /
    • 2023
  • Economic investigation is one of the main issues regarding the design and production of small-scale structures. This paper concerns the creation, implementation, and economic aspects of the cross-section profile of small-scale structures regarding the dynamic response of the free and forced vibration behavior of spinning nanoscale beams based on big data analysis. According to the financial analysis, the three practical non-uniform functions of cross-sections are compared to the uniform beam in the same weight and the equal material used. The previous studies reported that the uniform beams are more stable and contain a better frequency response based on the mechanical analysis. Still, concerning the economic investigation, which means the considered structures should have equal length and have the same weight in the aspect of material used, the conclusion can be different from the mechanical aspect. Consequently, in the current paper, the dynamic response along with computer technology as well as the big data analysis of the free and forced vibration of the nanobeam regarding the economic shape of the cross-section is scrutinized.

Experimental Study on the Development of Void Precast Concrete Slab using Rubber Tube Mold for Inner Core (고무튜브 몰드 프리캐스트 콘크리트 유공 슬래브 개발에 관한 실험적 연구)

  • Bae, Kyu-Woong;Hong, Sung-Yub
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.4
    • /
    • pp.293-303
    • /
    • 2021
  • The void PC slab has a structurally reasonable cross-section by forming the hollow section of the neutral axis that is unnecessary for bending behavior. Domestic PC factories have introduced automation equipment to produce hollow PC slabs, and are achieving hollow sections through inserts. However, since the excessive initial investment cost of the PC factory is the main factor in the increase in production cost, other alternatives are needed. Therefore, in this study, when producing hollow PC slab members, by using a rubber tube as a formwork to form an internal hollow space, it is intended to contribute to securing productivity through molding various hollow shapes, making it larger, lightweight, and enabling rapid production. To implement a hollow PC slab using a rubber tube mold, the shape of a hollow cross-section in which the tube is combined was implemented by considering the shape of the rubber tube first. In addition, to secure the concrete quality of the hollow part, the finish properties of the rubber tube mold and concrete were evaluated, and the hollow PC production process was established.

Development of Profile Design Method Based on Longitudinal Strain for Flexible Roll Forming Process (가변 롤 성형 공정시 길이방향 변형률에 근거한 제품 형상 설계 기술 개발)

  • Joo, B.D.;Han, S.W.;Shin, S.G.R.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.22 no.7
    • /
    • pp.401-406
    • /
    • 2013
  • The use of roll-formed products increases every year due to its advantages, such as high production rates, reduced tooling cost and improved quality. However, till now, it is limited to part profiles with constant cross section. In recent years, the flexible roll forming process, which allows variable cross sections of profiles by adaptive roll stands, was developed. In this study, an attempt to optimize profile design for the flexible roll forming process was performed. An equation that predicts the longitudinal strain for part geometries with variable cross-sections was proposed. The relationship between geometrical parameters and the longitudinal strain was analyzed and investigations on the optimal profile design were performed. Experiments were conducted with a lab-scale roll forming machine to validate the proposed equation. The results show that the profile design method proposed in this study is feasible and parts with variable cross sections can be successfully fabricated with the flexible roll forming process.

Enhancing the performance of a long-life modified CANDLE fast reactor by using an enriched 208Pb as coolant

  • Widiawati, Nina;Su'ud, Zaki;Irwanto, Dwi;Permana, Sidik;Takaki, Naoyuki;Sekimoto, Hiroshi
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.423-429
    • /
    • 2021
  • The investigation of the utilization of enriched 208Pb as a coolant to enhance the performance of a long-life fast reactor with a Modified CANDLE (Constant Axial shape of Neutron flux, nuclide densities, and power shape During Life of Energy production) burnup scheme has performed. The analyzes were performed on a reactor with thermal power of 800 MegaWatt Thermal (MWTh) with a refueling process every 15 years. Uranium Nitride (enriched 15N), 208Pb, and High-Cr martensitic steel HT-9 were employed as fuel, coolant, and cladding materials, respectively. One of the Pb-nat isotopes, 208Pb, has the smallest neutron capture cross-section (0.23 mb) among other liquid metal coolants. Furthermore, the neutron-producing cross-section (n, 2n) of 208Pb is larger than sodium (Na). On the other hand, the inelastic scattering energy threshold of 208Pb is the highest among Na, natPb, and Bi. The small inelastic scattering cross-section of 208Pb can harden the neutron energy spectrum. Therefore, 208Pb is a better neutron multiplier than any other liquid metal coolant. The excess neutrons cause more production than consumption of 239Pu. Hence, it can reduce the initial fuel loading of the reactor. The selective photoreaction process was developing to obtain enriched 208Pb. The neutronic was calculated using SRAC and JENDL 4.0 as a nuclear data library. We obtained that the modified CANDLE reactor with enriched 208Pb as coolant and reflector has the highest k-eff among all reactors. Meanwhile, the natPb cooled reactor has the lowest k-eff. Thus, the utilization of the enriched 208Pb as the coolant can reduce reactor initial fuel loading. Moreover, the enriched 208Pb-cooled reactor has the smallest power peaking factor among all reactors. Therefore, the enriched 208Pb can enhance the performance of a long-life Modified CANDLE fast reactor.

A Regression Program COVAFIT Accounting for Variance-Covariances in Experimental Nuclear Data (실험 핵자료의 분산-공분산을 고려한 회귀분석 프로그램 COVAFIT)

  • Oh, Soo-Youl;Jonghwa Chang
    • Nuclear Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.72-78
    • /
    • 1996
  • A computer program COVAFIT has been developed and applied to the evaluation of experimental cross sections for MeV energy incident particles. The program utilizes weighted least-square linear regression method with high-order polynomials derived in this study. Meeting the growing demand for the treatment of covariances in nuclear data, it deals with the variance and covariance data provided along with experimental cross sections and yields those for the evaluated ones. The evaluated results on two sets of neutron total cross section of oxygen and three sets of proton cross section for $C^{11}$ production reactions confirm the methodology formulated in and the applicability of the program.

  • PDF

A Evaluation of Fire Behavior According to Member Thickness of Precast Prestressed Hollow Core Slab of Fire Resistance Section (프리캐스트 프리스트레스트 내화단면 중공슬래브의 부재두께에 따른 화재거동평가 )

  • Yoon-Seob Boo;Kyu-Woong Bae;Sang-Min Shin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2023
  • At construction sites, interest in the production of precast materials is increasing due to off-site conditions due to changes in construction site conditions due to increased labor costs and the Act on the Punishment of Serious Accidents. In particular, the precast prestressed hollow slab has a hollow shape in the cross section, so structural performance is secured by reducing weight and controlling deflection through stranded wires. With the application of structural standards, the urgency of securing fire resistance performance is emerging. In this study, a fire-resistance cross section was developed by reducing the concrete filling rate in the cross section and improving the upper and lower flange shapes by optimizing the hollow shape in the cross section of the slab to have the same or better structural performance and economic efficiency compared to the existing hollow slab. The PC hollow slab to which this was applied was subjected to a two-hour fire resistance test using the cross-sectional thickness as a variable, and as a result of the test, fire resistance performance (load bearing capacity, heat shielding property, flame retardance property) was secured. Based on the experimental results, it is determined that fire resistance modeling can be established through numerical analysis simulation, and prediction of fire resistance analysis is possible according to the change of the cross-sectional shape in the future.

Production cross sections of radionuclides in the proton induced reactions on natural iron with the proton energy of 57 MeV

  • Sung-Chul Yang;Sang Pil Yoon;Tae-Yung Song;Guinyun Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1796-1802
    • /
    • 2024
  • The production cross sections of 55,56,57Co, 52gFe, 52g,54Mn, 51Cr, and 48V from the natFe (p,x) reactions were measured using a proton energy of 57 MeV at the Korea Multi-purpose Accelerator Complex (KOMAC) in Gyeongju, Korea. The conventional stacked-foil activation method and offline γ-ray spectroscopy were used to determine the excitation functions of proton induced nuclear reactions on iron. The measured excitation functions were compared with experimental data in literature and theoretical data from the TENDL-2021 library. The present data show generally good agreement with other experimental data, but discrepancies were found between the present data and the excitation functions of the TENDL-2021 library in the investigated energy range, except for 56,57Co and 54Mn.

Development of Vehicle Sealing Inspection System Using Geometry Matching Method (형상 매칭법을 이용한 비이클 실링 검사 시스템 개발)

  • Lee, Jung-Ho;Park, Chan-Hee;Seo, Young-Soo;Lee, Hyung-Soo;Kim, Han-Joo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.150-155
    • /
    • 2013
  • This work present a new method of sealing inspection system for vehicle in which foam rubber materials are used for sealing the vehicle parts. This system is composed from a devices comprising non-contact and real-time scanning on visual inspection in machine parts. We have been investigated qualitative factors that influenced on sealing system of vehicle structure which flexibly attenuated vibration and plenty of foam rubber materials having elastic property. However, there are different factors which still depended on outdated technique (personnel subjective judgment) in the performance inspection of rubber parts, specially for cross section inspection. Through a newly developed inspection system which recently applied for the production line, we successfully achieved more effective results of matching rate by about 80 % in the sealing performance inspection with 0.7% to 1.4% in the repeated errors. These are resulted from non-contacted response by CCD camera and vision program using geometry matching method. We expect that this system may be widely applied in the strict inspection parts of more diverse cross-section in future.

The multigroup library processing method for coupled neutron and photon heating calculation of fast reactor

  • Teng Zhang;Xubo Ma;Kui Hu;GuanQun Jia
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1204-1212
    • /
    • 2024
  • To accurately calculate the heating distribution of the fast reactor, a neutron-photon library in MATXS format named Knight-B7.1-1968n × 94γ was processed based on the ENDF/B-VII.1 library for ultrafine groups. The neutron cross-section processing code MGGC2.0 was used to generate few-group neutron cross sections in ISOTXS format. Additionally, the self-developed photon cross-section processing code NGAMMA was utilized to generate photon libraries for neutron-photon coupled heating calculations, including photo-atom cross sections for the ISOTXS format, prompt photon production cross sections, and kinetic energy release in materials (KERMA) factors for neutrons and photons, and the self-shielding effect from the capture and fission cross sections of neutron to photon have been taken into account when the photon source generated by neutron is calculated. The interface code GSORCAL was developed to generate the photon source distribution and interface with the DIF3D code to calculate the neutron-photon coupling heating distribution of the fast reactor core. The neutron-photon coupled heating calculation route was verified using the ZPPR-9 benchmark and the RBEC-M benchmark, and the results of the coupled heating calculations were analyzed in comparison with those obtained from the Monte Carlo code MCNP. The calculations show that the library was accurately processed, and the results of the fast reactor neutron-photon coupled heating calculations agree well with those obtained from MCNP.

Factors affecting real-time evaluation of muscle function in smart rehab systems

  • Hyunwoo Joe;Hyunsuk Kim;Seung-Jun Lee;Tae Sung Park;Myung-Jun Shin;Lee Hooman;Daesub Yoon;Woojin Kim
    • ETRI Journal
    • /
    • v.45 no.4
    • /
    • pp.603-614
    • /
    • 2023
  • Advancements in remote medical technologies and smart devices have led to expectations of contactless rehabilitation. Conventionally, rehabilitation requires clinicians to perform routine muscle function assessments with patients. However, assessment results are difficult to cross-reference owing to the lack of a gold standard. Thus, the application of remote smart rehabilitation systems is significantly hindered. This study analyzes the factors affecting the real-time evaluation of muscle function based on biometric sensor data so that we can provide a basis for a remote system. We acquired real clinical stroke patient data to identify the meaningful features associated with normal and abnormal musculature. We provide a system based on these emerging features that assesses muscle functionality in real time via streamed biometric signal data. A system view based on the amount of data, data processing speed, and feature proportions is provided to support the production of a rudimentary remote smart rehabilitation system.