• Title/Summary/Keyword: Production control

Search Result 9,714, Processing Time 0.032 seconds

금형공장의 공정관리를 위한 Modular Software System

  • 강무진;김영기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.301-305
    • /
    • 1992
  • A mold plant is characterized by complex processes, frequent schedule changes, and lots of troubles. In order to control the production in mold plant efficiently, huge amount of informations are to be managed in the appropriate way. In this paper, a modular software system for production control is described, which is located between a higher level production planning system and a process control system. It contains the functions such as order processing, operations scheduling and control, tool managemant, NC program managememt including DNC functions, production data acquisition and progress control and statistics.

Overview of Operations Strategy for Service Layout and Statistical Process Control (서비스 배치 및 SPC 운영 전략)

  • Choi, Sung-Woon
    • Journal of the Korea Safety Management & Science
    • /
    • v.8 no.6
    • /
    • pp.109-118
    • /
    • 2006
  • This paper proposes service layout strategy considering service characteristics by the use of benchmarking production system such as layout by P-Q chart, improvement tool, automated system, Toyota production system and lean production system. This paper represents operation methodology of statistical process control using control chart for service performance outcomes.

An Effectivity Analysis of Production Control Policies Based on Demand and Production Characteristics (수요 및 생산특성에 따른 생산통제 기법간의 효율성 분석에 대한 연구)

  • Lee, Jang-Han;Jeong, Han-Il;Park, Jin-Woo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.23 no.2
    • /
    • pp.403-420
    • /
    • 1997
  • In this paper, we examine the effect of production uncertainty to production control policies. First, we examine two famous production control policies, namely, MRP and JIT from the view point of shop floor control perspective, and analyze the differences between them due to demand fluctuations and activity time variations. Second, we conduct simulation studies on MRP and JIT to draw out the effects of demand fluctuations and activity time variations. Demand fluctuations are further classified into demand lumpiness and demand irregularity. And, activity time variations are further classified into stationary time variations and non-stationary time variations. Experimental results show that, in terms of demand fluctuations, MRP is affected by demand lumpiness, but JIT by demand irregularity. And we also see that both MRP and JIT are influenced by stationary time variation with respect to activity time variations.

  • PDF

Supervisory Control of Multi-Echelon Production-Distribution Systems with Limited Decision Policy (I)-Control Algorithm-

  • Jeong, Sang-Hwa;Kim, Jong-Kwan;Oh, Yong-Hun;Ryu, Sin-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.369-379
    • /
    • 2000
  • In industrial production-distribution systems, production and purchasing rates, associated inventories, and sales are very critical for the profits of each component in the system. The objective of this study is to investigate an effective information control scheme for a production -distribution system by automatic feedback control techniques. In this work, a dynamic control scheme that has an integrated -error with state-feedback and filtering (ISFF) is proposed as a new algorithm for a dynamic controller. Generalized formulations of the dynamic control are proposed in the continuous-time and discrete-time cases. A methodology for an evaluation of ISFF controller gains using the eigen structure property is presented. When an upper-limit is imposed on the production capability by available factory space and capital equipment, supervisory control is provided to avoid integrator-windup and deterioration of system performance.

  • PDF

Development of CNC controller based on i80486 and 32bit DSP chip (i80486과 32비트 DSP를 사용한 CNC 제어기의 개발)

  • Kim, Dong-Il;Song, Jin-Il;Kim, Sung-Kwan;Lee, Choong-Hwan;Lee, Yun-Suk;Kang, Moon;Na, Sang-Keun;Lim, Yong-Gyu;Nam, Ki-Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.537-540
    • /
    • 1992
  • This paper presents Samsung CNC (Computer Numerical Controller) system with an intel 80486/487 as the main CPU and a 32 bit floating point DSP(Digital Signal Processor) TMS320C30 as the motion control CPU. The Samsung CNC system diverse user-frienly characteristics such as multi-tasking, powerful menu system, internal PLC system, and 2/3 dimensional graphics in wire and solid mode. The main CPU executes central processing program, user interface program, interpreter, BMI, etc while the motion control CPU carries out some interpolations, acceleration/deceleration, and PID control algorithm with feedforward terms. Complex interpolations except linear and circular ones are performed on the main control CPU. The experimental results for the circular interpolation under linear acceleration/deceleration shows that the proposed CNC system can be widely used in controlling machining centers with good machining accuracy.

  • PDF

Asynchronous Waste: An Alternative Performance Measure for Pull Production Control System

  • Kim, ll-hyung
    • Management Science and Financial Engineering
    • /
    • v.6 no.1
    • /
    • pp.37-63
    • /
    • 2000
  • An important objective of pull-based production control is to achieve synchronized and smooth production flow in a multi-stage system that is subject to uncertainty. To our knowledge, previous research has not generated a performance measure that captures this objective of pull-based probased production control system. This performance material with respect to the instant when the operation is required. We examine the issue of asynchronous waste in a two-stage kanban control system.

  • PDF

Performance analysis and quality control of serial production lines

  • Han, Man-Soo;Lim, Jong-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.259-262
    • /
    • 1995
  • In this paper, a model of an asymptotically reliable serial production line with quailty control devices is introduced and analyzed. By an asymptotic technique and Taylor series expansion, its average production rate is approximated in a closed form. The results are applied to a case study of a surface mount system.

  • PDF

A Study on the Statistical Production Control of Energy Efficiency in Electric Product (전기제품 에너지 소비효율의 통계적 양산 관리 방법에 대한 연구)

  • Chun, Young-Ho;Kim, Seong-Don
    • Journal of the Korea Management Engineers Society
    • /
    • v.23 no.4
    • /
    • pp.73-86
    • /
    • 2018
  • Most electric products produced during the manufacturing process are produced after design and mass production under a given control standard. In particular, the development phase should present the criteria for the production process by setting appropriate limits based on the performance being targeted. Even if the standard of performance is set considering the performance of the process, measuring the performance of the product after actual production results will cause nonconformities with the expected results. Among the performance of electrical products, Energy standards represented by energy consumption efficiency continue to be of importance, and are mandatory standards that correspond to national standards in most countries. Therefore, statistical quality control of these standards shall basically have a large number of test equipment for each product, ensure sufficient test time and continuous sampling of product samples. In the end, companies that produce and sell electric appliances are striving to control mass production at a great cost, but this is not acceptable. This study presents basic characteristics of the energy efficiency of electrical products and proposes and conducts a case study on statistical production control methods for performance variation across products under the standards about domestic and international regulations.

Rule-based Process Control System for multi-product, small-sized production (다품종 소량생산 공정을 위한 규칙기반 공정관리 시스템)

  • Im, Kwang-Hyuk
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.15 no.1
    • /
    • pp.47-57
    • /
    • 2010
  • There have been many problems to apply SPC(Statistical Process Control) which is a traditional process control technology to the process of multi-product, small-sized production because a machine in the process manufactures small numbers, but various kinds of products. Therefore, we need the new process control system that can flexibly control the process by setting up the SPEC rules and the KNOWHOW rules. The SPEC rule contains the combination of diverse conditions to specify the characteristics of various products. The KNOWHOW rule is based on engineers' know-how. The study suggests the Rule-base Process Control that can be optimized to the multi-product, small-sized production. It was validated in the process of semiconductor production.

State-of-The-Art Factory-Style Plant Production Systems

  • Takakura, Tadashi
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1996.05a
    • /
    • pp.1-10
    • /
    • 1996
  • Factory-style plant production systems of various kinds are the final goal of greenhouse production systems. These systems facilitate planning for constant productivity per unit area and labor under various outside weather conditions, although energy consumption is intensive. Physical environmental control in combination with biological control can replace the use of agricultural chemicals such as insecticides, herbicides and hormones to regulate plants. In this way, closed systems which do not use such agricultural chemicals are ideal for environmental conservation for the future. Nutrient components in plants can be regulafied by physical environmental control including nutrient solution control in hydroponics. Therefore, specific contents of nutrients for particular plants can be listed on the container and be used as the basis of customer choice in the future. Plant production systems can be classified into three types based on the type of lighting: natural lighting, supplemental lighting and completely artificial lighting (Plant Factory). The amount of energy consumption increases in this order, although the degree of weather effects is in the reverse order. In the addition to lighting, factory-style plant production systems consist of mechanized and automated systems for transplanting, environmental control, hydroponics, transporting within the facility, and harvesting. Space farming and development of pharmaceutical in bio-reactors are other applications of these types of plant production systems. Various kinds of state-of-art factory-style plant production systems are discussed in the present paper. These systems are, in general, rather sophisticated and mechaized, and energy consumption is intensive. Factory-style plant production is the final goal of greenhouse production systems and the possibilities for the future are infinte but not clear.

  • PDF