• Title/Summary/Keyword: Production and Inventory Management

Search Result 249, Processing Time 0.024 seconds

Comparison of Raw Material Inventory Management Policies for a Precast Concrete Production Plant (프리캐스트 콘크리트 제작공장에 대한 원자재 재고관리 정책 비교)

  • Kwon, Hyeonju;Jeon, Sangwon;Lee, Jaeil;Jeong, Keunchae
    • Korean Journal of Construction Engineering and Management
    • /
    • v.25 no.5
    • /
    • pp.41-54
    • /
    • 2024
  • In this study, we compare and analyze the performance of three inventory management policies for raw material inventory management in a Precast Concrete production plant: Fixed Order Quantity Policy (FOQP), Fixed Order Interval Policy (FOIP), and (s, S) Ordering Policy (sSOP). In order to make more realistic conclusion, we developed and utilized the ARENA simulation model, a performance evaluation tool that considers the variance of raw material demand and supply for the entire production process in a PC production plant using multiple raw materials. For the three policies, reorder point, order quantity, target level, and order interval parameters were initialized by using Economic Order Quantity (EOQ) model and then optimized through OptQuest. As a result of optimization, inventory management costs were reduced by an average of 97.28% compared to the EOQ model that does not consider the variance of demand and supply. After setting three influencing factors, Project Occurrence Cycle (POC), Raw Material Lead-time (RML), and Unit Stock-out Cost (USC), a performance evaluation was conducted for the three policies. As a result of evaluation, the inventory management costs of FOQP and sSOP, which determine order intervals by considering inventory levels by real-time or daily, were 30.6% and 27.9% lower than FOIP with fixed order intervals respectively. In addition, inventory management costs were affected by RML and USC factors excluding POC, but the differences were 2.17% and 2.09% respectively, which were not large due to the optimization of parameters for responding the variance of raw material demand and supply.

A Study on the Implementation of Distributed MRP to Increase the Utilization of the MES System in the Automobile Parts Manufacturing Industry (자동차부품 제조업의 MES 시스템 활용도를 높이기 위한 분산형 MRP 구현에 관한 연구)

  • Nam, Eun-Jae;Kim, Kwang-Soo
    • Journal of the Korea Safety Management & Science
    • /
    • v.24 no.2
    • /
    • pp.127-134
    • /
    • 2022
  • Production management in the automobile parts industry is carried out according to the production plan of the customer, so it is important to prevent shortages in product supply. As the product composition became increasingly complex, the MES System was built for the purpose of efficient production plan management and inventory management, but its utilization is low. This study analyzed the problems of the MES system and sought to improve it. Through previous studies, it was confirmed that the inventory management of the pull approach that actually occurred in the warehouse is more suitable than the push approach based on the forecast of the warehouse for the volatility, complexity, and uncertainty of orders in the auto parts industry. To realize this, we tried distributed MRP by using the ADO function of VBA to link the standard information of the MES system with Excel and change the structure of the BOM table. Through this, it can help increase the accuracy of production planning and realize efficient inventory management, thereby increasing the utilization of the MES system in the auto parts industry and enhancing the competitiveness of the company.

A study on a single production inventory model with decaying items (진부화 제품의 단일 생산 재고 모델에 관한 연구)

  • 소재영;윤덕균
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1995.04a
    • /
    • pp.476-486
    • /
    • 1995
  • In this paper, an attempt has been made to revise Raafat' s(1985) results on an inventory model for decaying raw materials and the finished product at a constant rate which was based on Goyal's integrated inventory model for a single product system. This paper is concerned with scheduling the frequencies of order quantity of several different raw materials on a production inventory model. The purpose of this paper is to present a simple method of deciding the frequencies of order quantity of raw materials, in the sense of minimizing the average total cost of the system. We describe on iterative procedure for directly determining near optimal frequencies of order quantity for the raw materials and the associated fundamental cycle time which can be used for constructing the production duration of the finished product. In cases where feasible schedules cannot be constructed using the values from the iterative procedure, the procedure provides a basis for changing the order quantity frequencies and the fundamental cycle time to obtain feasible schedules. An example is given to illustrate the derived results.

  • PDF

A Development of Web-based Inventory System using a RFID in Injection Molding Industry (RFID를 이용한 사출산업에서의 웹기반 재고관리시스템 개발)

  • Lim, Seok-Jin
    • Journal of the Korea Safety Management & Science
    • /
    • v.12 no.3
    • /
    • pp.177-182
    • /
    • 2010
  • Industrial business environments have rapidly changed and face severe competitive challenges. The effective inventory system enables to product and deliver the products quickly for meeting due date of customer's order in this environment. This study have developed a web-based inventory system using RFID for an injection molding industry. The system analysis inventory problem issues such as inventory planning, warehouse assignment and assist to develop production scheduling. In this study, web-based inventory system using Java language and RFID technology is proposed and implemented. As the result of implementation of the system, we expected that it manages to inventory planning continually and systematically.

A Stochastic Production Planning Problem in Rolling Horizon Environment (계획기간의 연동적 고려 경우의 추계적 생산계획)

  • Sung, C. S.;Lee, Y. J.
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.14 no.2
    • /
    • pp.67-74
    • /
    • 1989
  • This paper considers single-product production and inventory management problem where cumulative demands up to each time period are mutually independent random variables(known) having continuous probability distributions and the associated cost-minimizing production schedule (when to produce and how much to produce) need be determined in rolling horizon environment. For the problem, both the production cost and the inventory holding and backlogging costs are included in the whole system cost. The probability distributions of these costs are expressed in terms of random demands, and utilized to exploit a solution procedure for a production schedule which minimizes the expected unit time system cost and also reduces the probability of rist that, for the first-period of each production cycle (rolling horizon), the cost of the "production" option will exceed that of the "non-production" one. Numerical examples are presented for the solution procedure illustration.cedure illustration.

  • PDF

Dynamic Production-Inventory Scheduling Model for Deteriorating Items with Expediting Cost (특급비용을 고려한 진부화 제품의 동적 생산-재고 모형)

  • Choe, Yeong-Jin;Kim, Man-Sik
    • Journal of Korean Society for Quality Management
    • /
    • v.17 no.1
    • /
    • pp.116-124
    • /
    • 1989
  • A multi-period production-inventory scheduling model, which extends the customary dynamic lot sizing model to the one for deteriorating items, is developed. The amount of deterioration during a period is assumed to be proportional to the on-hand inventory at the end of the period. It is futher assumed that the deterioration rates vary from period to period. In addtion, an expediting cost due to the delay of outstanding order is included and it is allowed to offset the order release date in advance, instead, in order to avoid incurring the cost. Finally, a quasi-WW algorithm corresponding to the Wagar-Whitin algorithm is proposed to obtain the optimal production-inventory schedules.

  • PDF

Development of production control information system for multi-product, small-lot-sized production (다품종소량 생산관리정보시스템의 개발사례)

  • 조규갑;김갑환;문일경;김기영
    • Korean Management Science Review
    • /
    • v.10 no.2
    • /
    • pp.43-59
    • /
    • 1993
  • A production control information system developed for multi-product, small-lot-sized production is presented. The system is composed of interrelated modules for production planning, shop floor control, and inventory/material management. The architecture of the system, functions of each module, and information processing procedures of each function are discussed.

  • PDF

(r, Q) Policy for Operation of a Multipurpose Facility (단일 범용설비 운영을 위한 (r, Q) 정책)

  • ;Oh, Geun-Tae
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.17 no.3
    • /
    • pp.27-46
    • /
    • 1992
  • This paper considers an (r, Q) policy for operation of a multipurpose facility. It is assumed that whenever the inventory level falls below r, the model starts to produce the fixed amount of Q. The facility can be utilized for extra production during idle periods, that is, when the inventory level is still greater than r right after a main production operation is terminated or an extra production operation is finished. But, whenever the facility is in operation for an extra production, the operation can not be terminated for the main production even though the inventory level falls below r. In the model, the demand for the product is assumed to arrive according to a compound Poisson process and the processing time required to produce a product is assumed to follow an arbitary distribution. Similarly, the orders for the extra production is assumed to accur in a Poisson process are the extra production processing time is assumed to follow an arbitrary distribution. It is further assumed that unsatisfied demands are backordered and the expected comulative amount of demands is less than that of production during each production period. Under a cost structure which includes a setup/ production cost, a linear holding cost, a linear backorder cost, a linear extra production lost sale cost, and a linear extra production profit, an expression for the expected cost per unit time for a given (r, Q) policy is obtained, and using a convex property of the cost function, a procedure to find the optimal (r, Q) policy is presented.

  • PDF

Integrated Production-Distribution Planning for Single-Period Inventory Products Using a Hybrid Genetic Algorithm (혼성 유전알고리듬을 이용한 단일기간 재고품목의 통합 생산-분배계획 해법)

  • Park, Yang-Byung
    • IE interfaces
    • /
    • v.16 no.3
    • /
    • pp.280-290
    • /
    • 2003
  • Many firms are trying to optimize their production and distribution functions separately, but possible savings by this approach may be limited. Nowadays, it is more important to analyze these two functions simultaneously by trading off the costs associated with the whole. In this paper, I treat a production and distribution planning problem for single-period inventory products comprised of a single production facility and multiple customers, with the aim of optimally coordinating important and interrelated decisions of production sequencing and vehicle routing. Then, I propose a hybrid genetic algorithm incorporating several local optimization techniques, HGAP, for integrated production-distribution planning. Computational results on test problems show that HGAP is effective and generates substantial cost savings over Hurter and Buer's decoupled planning approach in which vehicle routing is first developed and a production sequence is consequently derived. Especially, HGAP performs better on the problems where customers are dispersed with multi-item demand than on the problems where customers are divided into several zones based on single-item demand.

A Computation Model of the Quantity Supplied to Optimize Inventory Costs for Fast Fashion Industry (패스트 패션의 재고비용 최적화를 위한 상품공급 물량 산정 모델)

  • Park, Hyun-Sung;Park, Kwang-Ho;Kim, Tai-Young
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.1
    • /
    • pp.66-78
    • /
    • 2012
  • This paper proposes a computation model of the quantity supplied to optimize inventory costs for the fast fashion. The model is based on a forecasting, a store and production capacity, an assortment planning and quick response model for fast fashion retailers, respectively. It is critical to develop a standardized business process and mathematical model to respond market trends and customer requirements in the fast fashion industry. Thus, we define a product supply model that consists of forecasting, assortment plan, store capacity plan based on the visual merchandising, and production capacity plan considering quick response of the fast fashion retailers. For the forecasting, the decomposition method and multiple regression model are applied. In order to optimize inventory costs. A heuristic algorithm for the quantity supplied is designed based on the assortment plan, store capacity plan and production capacity plan. It is shown that the heuristic algorithm produces a feasible solution which outperforms the average inventory cost of a global fast fashion company.