• Title/Summary/Keyword: Production Mechanism

Search Result 2,111, Processing Time 0.028 seconds

Transition Metal-Based Layered Double Hydroxides for Oxygen Evolution Reaction Catalysts (전이금속 이중층 수산화물 기반 산소발생반응 촉매 연구 동향)

  • Da-Un Han;Gyeongbae Park
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.4
    • /
    • pp.358-373
    • /
    • 2024
  • Oxygen evolution reaction is a critical bottleneck for the development of efficient electrochemical hydrogen production because of its sluggish reaction. Among various catalysts, transition metal-based layered double hydroxide has drawn significant attention due to their excellent catalytic properties and cost-effectiveness. This paper begins with basic crystal structures, and then conventional adsorbate evolution mechanism of layered double hydroxide. Strategies for enhancing catalytic properties based on adsorbate evolution mechanism and lattice oxygen mechanism that could surpass theoretical limit of adsorbate evolution mechanism are discussed. This paper ends with a brief discussion on the challenges and future directions of layered double hydroxide-based oxygen evolution reaction catalysts.

Cholera Toxin Production Induced upon Anaerobic Respiration is Suppressed by Glucose Fermentation in Vibrio cholerae

  • Oh, Young Taek;Lee, Kang-Mu;Bari, Wasimul;Kim, Hwa Young;Kim, Hye Jin;Yoon, Sang Sun
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.3
    • /
    • pp.627-636
    • /
    • 2016
  • The causative agent of pandemic cholera, Vibrio cholerae, infects the anaerobic environment of the human intestine. Production of cholera toxin (CT), a major virulence factor of V. cholerae, is highly induced during anaerobic respiration with trimethylamine N-oxide (TMAO) as an alternative electron acceptor. However, the molecular mechanism of TMAO-stimulated CT production is not fully understood. Herein, we reveal that CT production during anaerobic TMAO respiration is affected by glucose fermentation. When the seventh pandemic V. cholerae O1 strain N16961 was grown with TMAO and additional glucose, CT production was markedly reduced. Furthermore, an N16961 Δcrp mutant, devoid of cyclic AMP receptor protein (CRP), was defective in CT production during growth by anaerobic TMAO respiration, further suggesting a role of glucose metabolism in regulating TMAO-mediated CT production. TMAO reductase activity was noticeably decreased when grown together with glucose or by mutation of the crp gene. A CRP binding region was identified in the promoter region of the torD gene, which encodes a structural subunit of the TMAO reductase. Gel shift assays further confirmed the binding of purified CRP to the torD promoter sequence. Together, our results suggest that the bacterial ability to respire using TMAO is controlled by CRP, whose activity is dependent on glucose availability. Our results reveal a novel mechanism for the regulation of major virulence factor production by V. cholerae under anaerobic growth conditions.

Mechanism of a grafting machine using the insertion method (삽접법을 이용한 기계접목 메카니즘 연구)

  • Park, Kyu-Sik;Lee, Ki-Myung;Kim, Joo-Yup
    • Current Research on Agriculture and Life Sciences
    • /
    • v.15
    • /
    • pp.115-122
    • /
    • 1997
  • Grafting is an important skill for the stable supply and production of high quality. However, the shortage of skillful labor has become great difficulty for a mass production of grafting-seedling. In this study, a suitable mechanism for a grafting machine was developed. The following summarize the results of this study: 1. An insertion method was selected for mechanism of the grafting machine without bonding agent, clip, pin. This insertion-grafting method can be applicable to general vegetables and a mass production system. In addition to, this method is suitable for developing the grafting mechanism. 2. Growing point was removed while remaining both cotyledons on rootstock. The productivity of this system was five fold greater than the one of an experienced labor. 3. The rootstock processing was placed on left and scion processing unit was placed on right of the system, then processed rootstock and scion graft by rotating $180^{\circ}$. 4. The efficiency tests on mechanical grafting rate showed 98%.

  • PDF

Inhibitory Effects of Piperine on the Production of Nitric Oxide, Interleukin-10 and Interleukine-12 in Murine Peritoneal Macrophages (복강 대식세포에서 피페린의 일산화질소, 인테루킨-10과 인테루킨-12의 억제 효과)

  • Bae, Gi-Sang;Lee, Ju-Sung;Sung, Kang-Keyng;Park, Sung-Joo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.2
    • /
    • pp.452-456
    • /
    • 2009
  • The purpose of this study was to investigate the anti-inflammatory effects and cellular mechanism of piperine on murine peritoneal macrophages. To evaluate the effects of piperine, we examined the production of nitric oxide (NO), interleukin (IL)-10 and IL-12. To investigate inhibitory mechanism of piperine, we examined the MAPKs and Ik-Ba in murine peritoneal macrophages, Piperine itself does not have any cytotoxic effect and reduced lipopolysaccharid (LPS), Poly(I:C), CpG-ODN -induced production of NO, IL-10 and IL-12 in peritoneal macrophages. Piperine inhibited the activation of extracelluar signal-regulated kinase (ERK 1/2) and c-Jun NH2-terminal kinase (JNK 1/2) not the activation of p38 and the degradation of inhibitory kappa B a (Ik-Ba) in the LPS-stimulated murine peritoneal macrophages.ln conclusion, Piperine down-regulated LPS-induced production of NO, IL-10 and IL-12, which could provide a clinical basis for anti-inflammatory properties of piperine.

Justicidin A Reduces β-Amyloid via Inhibiting Endocytosis of β-Amyloid Precursor Protein

  • Chun, Yoon Sun;Kwon, Oh-Hoon;Oh, Hyun Geun;Cho, Yoon Young;Yang, Hyun Ok;Chung, Sungkwon
    • Biomolecules & Therapeutics
    • /
    • v.27 no.3
    • /
    • pp.276-282
    • /
    • 2019
  • ${\beta}$-amyloid precursor protein (APP) can be cleaved by ${\alpha}$-, and ${\gamma}$-secretase at plasma membrane producing soluble ectodomain fragment ($sAPP{\alpha}$). Alternatively, following endocytosis, APP is cleaved by ${\beta}$-, and ${\gamma}$-secretase at early endosomes generating ${\beta}$-amyloid ($A{\beta}$), the main culprit in Alzheimer's disease (AD). Thus, APP endocytosis is critical for $A{\beta}$ production. Recently, we reported that Monsonia angustifolia, the indigenous vegetables consumed in Tanzania, improved cognitive function and decreased $A{\beta}$ production. In this study, we examined the underlying mechanism of justicidin A, the active compound of M. angustifolia, on $A{\beta}$ production. We found that justicidin A reduced endocytosis of APP, increasing $sAPP{\alpha}$ level, while decreasing $A{\beta}$ level in HeLa cells overexpressing human APP with the Swedish mutation. The effect of justicidin A on $A{\beta}$ production was blocked by endocytosis inhibitors, indicating that the decreased APP endocytosis by justicidin A is the underlying mechanism. Thus, justicidin A, the active compound of M. angustifolia, may be a novel agent for AD treatment.

Analysis of the Mechanism of Thread-Embedding Acupuncture in Korean Medicine Beauty Treatment (한국의 한의 미용에서 매선요법 치료 기전에 대한 분석)

  • Eun-Young Park;Hyung-Sik Seo
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.36 no.4
    • /
    • pp.113-121
    • /
    • 2023
  • Objectives : The purpose of this study is to analyze the treatment mechanism of Thread-embedding acupuncture, which is used in Korean medicine beauty treatment. Methods : After searching papers published up to January 1, 2023 using the keyword "Thread-embedding" through the OASIS site, we selected beauty papers that mentioned the treatment mechanism of Thread-embedding acupuncture. Results : A total of 60 papers were retrieved: 19 papers on the topic of cosmetic diseases, 35 papers on the theme of other diseases, and 6 papers written unrelated to diseases. Among the 19 papers on the topic of cosmetic diseases, one unreadable paper was excluded. Among the 18 papers, we finally selected 6 papers that mentioned treatment mechanisms: 2 on facial wrinkles, 2 on obesity, 1 on breast enlargement, and 1 on transdermal hydration. The treatment mechanism of Thread-embedding acupuncture is that in the case of facial wrinkles, polydioxanone(PDO) is embedded to fill the volume, and as it decomposes, it causes a tissue reaction around the area. In obesity, it promotes fat decomposition by improving circulation, and promotes breast enlargement and elasticity through collagen formation. In transdermal hydration, it induces the production of surrounding fibers to increase skin elasticity and moisture. Conclusions : Thread-embedding acupuncture appears to have a cosmetic effect through a mechanism that promotes the production of collagen and elastic fibers in the subepidermal dermal layer and increases the activity of skin moisturizing factors during the absorption process after the PDO suture is embedded.

A system's approach for an aggregate control of order entry-production schedule-shippment cycle (수주-생산-출하관리의 효율성제고 종합방안)

  • Jeong, Byeong-Hui;Yeo, Sang-Hwan;Lee, Myeon-U;Yun, Jo-Deok
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.7 no.2
    • /
    • pp.43-54
    • /
    • 1981
  • In a complex production system, the efficient control of order entry-production schedule-shippment cycle is one of the most important managerial aspects. In this paper, an aggregate control mechanism has been developed. The result showed steps for improving and for optimizing the total systems efficiency. A simplified guidelines for a con ceptual data base has been suggested.

  • PDF

Novel Gravity Compensation Mechanism by Using Wire-Winding (와이어 와인딩을 이용한 신개념 중력보상 메커니즘)

  • Lee, DongGyu;Lee, SangHo;Park, JungWhan;Seo, TaeWon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.9
    • /
    • pp.733-737
    • /
    • 2016
  • In this paper, we propose a mechanism that can compensate for gravity in a robot manipulator. Industry robots generate torque due to carrying heavy weight. For this reason, the robots need high specification motors, which increases the prices of the robots and their production costs. In order to resolve these problems, a mechanism for gravity compensation has been developed using a spring and wire system. But this system has problems related to wire stretching. A winding mechanism is therefore used to supplement this drawback of the wire. The robot used was developed by the 1-DOF system. Analysis was performed for the performance of the mechanism. Experiments were conducted to compare simulation results and experimental results.

4-legged Walking Mechanism Using a Janssen Mechanism (얀센 메커니즘을 이용한 4 족 보행기구)

  • Hwang, Yuntae;Kim, Cheonho;Lee, Hyungseok;shin, Donghwan
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.493-497
    • /
    • 2016
  • Walking mechanism, there are many types. Prior to the modeling and design, we thought about a variety of mechanisms based on the Janssen mechanism to design a walking mechanism optimized for walking. The more the legs increases the stability of the structure, while the weight is heavy and if that advantage had the disadvantage, the legs are easier to walk in the utilization and structural aspects of the torque had fewer advantages. The disadvantage is that the instability mechanism, four-legged, but improve it and look forward to the idea of utilization and cost-effectiveness, its future utilization will be endless. To study this, we utilized a variety of software, such as m-sketch, Edison design program, we have seen the actual production through scientific experiments box.

  • PDF