• Title/Summary/Keyword: Production Mechanism

Search Result 2,117, Processing Time 0.029 seconds

Bloating Mechanism of Lightweight Aggregate with the Size

  • Lee, Ki Gang
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.2
    • /
    • pp.241-245
    • /
    • 2016
  • The purpose of this study was to investigate the bloating mechanism of artificial lightweight aggregates with different sizes (ESA, effective surface area). Aggregates were produced using hard clay, stone sludge, and a bloating agent in order to observe the effect of the gradation of the artificial lightweight aggregates. Kerosene and amorphous carbon were used as bloating agent. The particle size of the produced aggregate ranged from 3 mm to 9 mm. With regard to the amount of bloating agent to be used, 2 ~ 6 parts by weight were used. The specific gravity, absorption rate, and the type of aggregates produced by rapid sintering at $1075{\sim}1200^{\circ}C$ were determined. Microstructures were observed. When ESA had a value of 1 or below, kerosene, which has a high burning rate, was found to be advantageous for use as a bloating agent. When ESA had a value of 1 or above, carbon, which has a relatively low burning rate was found to be an advantageous bloating agent. It is thought that kerosene is more advantageous, as ESA decreases, for the production of aggregates having low water absorption rate.

Manganese and Iron Interaction: a Mechanism of Manganese-Induced Parkinsonism

  • Zheng, Wei
    • Environmental Mutagens and Carcinogens
    • /
    • v.23 no.4
    • /
    • pp.115-130
    • /
    • 2003
  • Idiopathic Parkinson's disease (IPD) represents a common neurodegenerative disorder. While epidemiological studies have suggested a number of risk factors including age, gender, race, and inherited disorder, the cumulative evidence supports the view that environmental or occupational exposure to certain chemicals may contribute to the initiation and progress of Parkinsonism. More recently, clinical and laboratory investigations have led to the theory that dysregulation of iron, an essential metal to body function, may underlie IPD by initiating free radical reaction, diminishing the mitochondrial energy production, and provoking the oxidative cytotoxicity. The participation of iron in neuronal cell death is especially intriguing in that iron acquisition and regulation in brain are highly conservative and thus vulnerable to interference from other metals that bear the similar chemical reactivity. Manganese neurotoxicity, induced possibly by altering iron homeostasis, is such an example. In fact, the current interest in manganese neurotoxicology stems from two primary concerns: its clinical symptoms that resemble Parkinson's disease and its increased use as an antiknock agent to replace lead in gasoline. This article will commence with addressing the current understanding of iron-associated neurodegenerative damage. The major focus will then be devoted to the mechanism whereby manganese alters iron homeostasis in brain.

  • PDF

Study on Mechanism of Burr Formation in Drilling (드릴가공시 버 형성에 관한 연구)

  • Lee, Jing-Koo;Ko, Sung-Lim;Ko, Dae-Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.10
    • /
    • pp.200-207
    • /
    • 2001
  • Burrs farmed in drilling are classified into three types, no burr, burrs with cap, teared burr. To control burr size in drilling, the second type burrs with cap are to be formed because it is small and uniform. It is necessary to understand the mechanism of cap formation to derive the burr formation into second type burr with cap. In several materials. second type burrs are formed in drilling by changing cutting conditions. It is observed that cap is formed as a result of the plastic deformation along the outside of exit hope. According to the tension behavior of the material in concentrated region between hole and drill outside edge, the geometry of burr with cap is determined. Simplified 2D FEM analysis shows good prediction for burr formation.

  • PDF

Kinematics and Design of CNC Drill Grinding Machine (CNC 드릴 연삭기 구조 및 설계)

  • 강성균
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.555-559
    • /
    • 1996
  • Based on the general drill grinding mechanism, termed the helical grinding system, the conceptual design of 5 axes CNC drill grinding machine is proposed. Unique determination of the grinding parameters for precise production of the desired flank geometry is discussed by utilizing a mathematical model. Also, different combinations of grinding parameters are mentioned in order to produce various drill geometries (conical, cylindrical, and planar drill) on the single proposed CNC machine. A manual helical grinding machine has been fabricated and consequently helical drills have been ground in order to check the feasibility of the proposed grinding mechanism and its functionality.

  • PDF

Characteristics of Stock Drainage Depending on Refining Load and Analysis of Drainage Factors (고해하중변화에 의한 탈수성과 탈수영향 인자 분석)

  • 장현성;박종문
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.36 no.2
    • /
    • pp.10-16
    • /
    • 2004
  • Structures and strengths of paper have been studied by analyzing fibers characteristics depending on refining methods. Mixing ratio of softwood and hardwood fibers and fibers characteristics have been analyzed for paper quality improvement. In this study flocculation and drainage of fibers were analyzed to improve the production efficiency and paper product's quality. Floc size and drainage rate depending on stock consistency and fines content were analyzed. Total amount of drainage during drainage process was measured quantitatively by using DI(drainage index). Floc size, viscosity of floc and dewatering times were also measured. In the case of refining load $2.8 kg_f$ , drainage was occurred by filtration mechanism rather than thickening mechanism because drainage resistance increased by fibrillation of fibers. Therefore, the drainage rate of $2.8 kg_f$ refining load stock was slower than that of $5.6 kg_f$.

The Mechanism of Poly I:C-Induced Antiviral Activity in Peritoneal Macrophage

  • Pyo, Suh-Kenung
    • Archives of Pharmacal Research
    • /
    • v.17 no.2
    • /
    • pp.93-99
    • /
    • 1994
  • Macrtophages play an important role in defense against virus infection by intrinsic resistance and by extrinsic resistance. Since interferon-induced enzymes which are 2'-5' oligoadenylate synthetase and p1/eIF-2 protein kinase have been shown to be involved in the inhibition of viral replication, I examined the mechanism by which poly I:C, an interferon inducer, exerts its antiviral effects in inflammatory macrophages infected with herpes simplex virus type 1 (HSV-1). The data presented here demonstrate that poly I:C-induced antiviral activity is partially due to the activation of 2'-5' pligoadenylate synthetase. The activation of 2'-5' oligoadenlate A synthetase by poly I:C is also at least mediated via the production of interferon-.betha.. Taken together, these data indicate that interferon-.betha. produced in response to poly I:C acts in an autocrine manner to activate the 2'-5' oligoadenylate synthetase and to induce resistance to HSV-1.

  • PDF

The Inhibitory Effect of Agrimonia pilosa Ledeb Extract on Allergic Reaction (짚신나물 추출물의 알레르기 반응 억제 효과)

  • Kim, Young-Mi
    • Korean Journal of Medicinal Crop Science
    • /
    • v.18 no.6
    • /
    • pp.398-404
    • /
    • 2010
  • Complementary and alternative medicines are considered as a promising research field to develop new therapies for various allergic diseases. In this study, we investigated the anti-allergic effect of Agrimonia pilosa Ledeb (AP) by using passive cutaneous anaphylaxis in mice and its mechanism of action in mast cells. The extract of AP reversibly inhibited degranulation in RBL-2H3 cells and bone marrow-derived mast cells (BMMCs). AP also suppressed the passive cutaneous anaphylaxis inducing by IgE and antigen (Ag) in a dose-dependent manner. In the study to find its mechanism of action, AP inhibited the phosphorylation of Syk kinase, a pivotal protein which is regulated by Src-family kinase for activation of mast cells. In addition, AP also suppressed activation of Akt and Erk1/2 that are critical for the production of cytokines in mast cells. The results strongly suggest that AP exerts anti-allergic activity in vitro and in vivo through the inhibition of activation of Syk in mast cells.

A Study on 2 Phase Excitation Method of SRM Drive (SRM 드라이브의 2상여자방식에 관한 연구)

  • Moon, Jae-Won;An, Young-Ju;Ahn, Jin-Woo;Hwan, Young-Moon
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.177-180
    • /
    • 1997
  • A new excitation method of switched reluctance moor drive is described in this paper. This motor produces reluctance torque by mutual action between tyro phases as well as conventional self reluctance torque. The change of self inductance and mutual inductance are used to produce torque. This paper suggests the operational principle, the mechanism of torque product and the driving characteristics of Switched Reluctance Motor with 2 phase excitation against conventional SRM experimentally. The energy conversion ratio is increased because the next phase is excited after one phase is already excited. Acoustic noise of SRM with 2 phase excitation is decreased than that of conventional SRM due to the mechanism of torque production.

  • PDF

Grinding Mechanism and Case Study on Double-Disc Grinding of Ferrous Sintered Material

  • Tanaka, Masaru;Yoshimoto, Akinori;Ohshita, Hideo;Hashimoto, Toshihiko
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.877-878
    • /
    • 2006
  • The sintered parts are mainly used for automobile industry, and a part of air conditioners. In automobile industry, the application range of sintered parts is very broad and use for a driving and a lubricating system. And air conditioner uses them for compressor. Grinding of compressor and pump parts is very difficult these days, because these parts use High hardness materials and require high precision grinding. Tool life has to be extended to decrease production cost. We analyzed processing mechanism and developed new grinding wheels for Double Disk Grinding. And, we introduce new truing technology that improved tool-life and precision.

  • PDF

The Cause Analysis on Fracture of Diesel Locomotive Engine Liner (디젤동차용 엔진 라이너 파손 원인에 관한 연구)

  • Kwon Sung-Tae;Kim Jung-Nam
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.674-679
    • /
    • 2004
  • In this study, we investigated the cause analysis on fracture of diesel locomotive engine liner, which was trouble assuming the inflow of cooling water. In order to reveal the cause of fracture, we studied the use history of engine, the drawing of production appearance and the stress distribution of engine in use. Also, we conducted experiments such as tension strength test, bending test and hardness test. Next, we observed fractured sections by SEM for the purposed of explaining the fracture mechanism of engine liner. Test results showed that fracture mechanism was brittle fracture due to coarse casting structure and stress concentration caused by manufacturing badness.

  • PDF