• 제목/요약/키워드: Product classification method

검색결과 176건 처리시간 0.027초

유사도 평가 방법론을 이용한 POP 시스템의 구현 (Implementing a POP System using Similarity Evaluation Method)

  • 김종수;김경택
    • 산업경영시스템학회지
    • /
    • 제29권4호
    • /
    • pp.91-99
    • /
    • 2006
  • A POP system, which collects manufacturing data from the shop floors and supply them to higher level systems, should be maintained and upgraded according to the change of production environment such as new product introduction. This situation leads to the need of a cost-effective system development methodology. In this paper, a methodology based on the classification and the similarity comparison of manufacturing processes is proposed. In this, a new product is classified according to the similarity of its manufacturing processes, which enables recycling of existing system modules. The proposed methodology has been tested in the case of an electronics parts manufacturing company, where a POP system is implemented. The result shows that the proposed methodology can save time and efforts for system implementation.

실사 기반 VR 콘텐츠의 감성 반응 연구: 360 제품 이미지를 중심으로 (Study on the Emotional Response of VR Contents Based on Photorealism: Focusing on 360 Product Image)

  • 심현준;노연숙
    • 감성과학
    • /
    • 제23권2호
    • /
    • pp.75-88
    • /
    • 2020
  • 정보 기술 발전으로 인하여 제품 정보를 전달하는 방식이 오프라인과 2D중심에서 온라인과 3D로 이동하면서 효율적인 정보 전달을 위한 다양한 시도가 이루어지고 있다. 이러한 시도는 실물이 부재된 온라인 공간에서 단순히 제품의 정보를 전달하는 것에 그치지 않고 소비자에게 가상의 체험을 제공하면서 온라인 쇼핑의 다변화 및 활성화에 중요한 역할을 하고 있다. 360 제품 이미지는 피사체를 회전시켜 촬영하여 대상을 다양한 시점에서 입체적으로 볼 수 있는 실사 기반의 VR이다. 360 제품 이미지는 기존의 정지 이미지와 비교하여 대상물에 대해 풍부한 정보를 전달할 수 있다는 측면에서 주목받고 있다. 360 제품 이미지는 다양한 제작 요인에 의해 영향을 받으며, 이에 따라 이용자의 반응에 차이가 있으나 기술의 역사가 짧은 만큼 관련 연구 또한 미비하다. 따라서 본 연구에서는 360 제품 이미지의 제품의 형태와 소스 이미지의 수에 따라 변하는 이용자의 반응을 파악하고자 하였다. 이를 위해 온라인 쇼핑몰에서 많이 접할 수 있는 상품군 중 대표적인 제품들을 선정하여 360 제품 이미지를 제작하고 75인의 이용자를 대상으로 실험을 진행하였으며, 의미분별법을 적용한 실험 설문을 통해 360 제품 이미지에 대한 감성 반응을 분석하였다. 본 연구의 결과는 360 제품 이미지에 대한 수용자의 감성을 이해하고 파악하는데 기초 자료로 활용될 수 있을 것이다.

화상분석을 이용한 소프트 센서의 설계와 산업응용사례 2. 인조대리석의 품질 자동 분류 (Soft Sensor Design Using Image Analysis and its Industrial Applications Part 2. Automatic Quality Classification of Engineered Stone Countertops)

  • 류준형;유준
    • Korean Chemical Engineering Research
    • /
    • 제48권4호
    • /
    • pp.483-489
    • /
    • 2010
  • 본 연구에서는 화상분석(image analysis)에 기반한 소프트 센서를 설계하고, 이를 색상-질감 특성을 가진 제품의 외관품질 자동분류에 적용하였다. 색상과 질감(texture)을 동시에 가진 화상을 분석하기 위해 다중해상도 다변량 화상분석(Multiresolutional Multivariate Image Analysis, MR-MIA) 기법을 이용하였으며, 자동 분류를 위한 감독 학습법(supervised learning)으로는 Fisher의 판별분석(Fisher's discriminant analysis)을 사용하였다. 잠재변수법의 하나인 Fisher의 판별분석을 사용하였기 때문에, 제품의 외관을 서로 다른 불연속적인 부류로의 분류할 수 있을 뿐 아니라, 연속적인 외관 변화를 일관적이고 정량적으로 추정함은 물론, 외관의 특성 해석 또한 가능하였다. 이 방법은 인조대리석 제조 공정에서 중간 및 최종 제품의 외관 품질을 자동으로 분류하는 데에 성공적으로 적용되었다.

Machine learning-based nutrient classification recommendation algorithm and nutrient suitability assessment questionnaire

  • JaHyung, Koo;LanMi, Hwang;HooHyun, Kim;TaeHee, Kim;JinHyang, Kim;HeeSeok, Song
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권1호
    • /
    • pp.16-30
    • /
    • 2023
  • The elderly population is increasing owing to a low fertility rate and an aging population. In addition, life expectancy is increasing, and the advancement of medicine has increased the importance of health to most people. Therefore, government and companies are developing and supporting smart healthcare, which is a health-related product or industry, and providing related services. Moreover, with the development of the Internet, many people are managing their health through online searches. The most convenient way to achieve such management is by consuming nutritional supplements or seasonal foods to prevent a nutrient deficiency. However, before implementing such methods, knowing the nutrient status of the individual is difficult, and even if a test method is developed, the cost of the test will be a burden. To solve this problem, we developed a questionnaire related to nutrient classification twice, based upon which an adaptive algorithm was designed. This algorithm was designed as a machine learning based algorithm for nutrient classification and its accuracy was much better than the other machine learning algorithm.

소비자관점의 패션브랜드 분류 기준에 관한 연구 (A Study on Criteria for Classifying Fashion Brands from the Viewpoint of Consumer)

  • 박송애
    • 한국의상디자인학회지
    • /
    • 제11권3호
    • /
    • pp.87-99
    • /
    • 2009
  • The purpose of this study was to find out criteria for classifying fashion brand from the consumer point of view. This was compared with the viewpoint of fashion business practice in order to develop strategy of fashion brands and to manage brand effectively and systematically, and to suggest theoretical frame for application of these criteria. This study was researched as the succeeding study of a model of criteria for classifying fashion brands from the viewpoint of fashion business practice. Survey was used as a research method. The subjects were 422 women who were 20-30 years old and living in and near Seoul. Questionnaires were developed based on 37 fashion brands' classification criteria by means of pre-survey, and SPSS package and LISREL program were used to analyze the data. As a result of factor analysis considering 37 classification criteria, 8 factors were identified as classification criteria. They were as follows; the level of brand form, the level of product concept, the level of management item, the level of brand sales ability, the level of customer management, the level of brand advertising and awareness, the level of brand value, and the level of product lead ability. All of criteria were correlated to each other. The effective method to classify fashion brands was proposed by establishing the model of the relationship of the values of 7 criteria and by proving it with the structure equation model analysis. The model of criteria for classifying fashion brands that was suggested on this study was proved by the structure equation model analysis. In this study, from a consumer's point of view we suggested a theoretical framework describing which criteria would be selected to classify and utilize fashion brand market. This model can be used to select the most efficient classification criteria and classify them hierarchically instead of selecting only one among some factors that complex and interactional and classifying.

  • PDF

카노 분석을 이용한 스마트카드의 품질요소 분석 (A Study on Quality of Smart Card Using Kano's Two-dimensional Method)

  • 나명환;박영지;위소영;신보미;김미은
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제11권2호
    • /
    • pp.177-186
    • /
    • 2011
  • Traditionally, one uses a method of straight-line recognition to evaluate quality of product or service. One can satisfy with the product or service if their physical requirement of are met some criterions and can not satisfy them if their physical requirement are not met. Kano, et al(1984) introduce two dimensional Quality model to evaluate quality of product or service. They classify Quality Characteristic of product and service to three categories; satisfying quality, attractive quality, expected quality. In this paper, 17 evaluation features in 6 categories of smart-card are obtained from Focus-interview and Brainstorming and classified into 3 categories of quality model by Kano's two dimensional method. This classification is expected to provide a guideline for evaluation of smart-card.

소프트 컴퓨팅기술을 이용한 원격탐사 다중 분광 이미지 데이터의 분류에 관한 연구 -Rough 집합을 중심으로- (A Study on Classifications of Remote Sensed Multispectral Image Data using Soft Computing Technique - Stressed on Rough Sets -)

  • 원성현
    • 경영과정보연구
    • /
    • 제3권
    • /
    • pp.15-45
    • /
    • 1999
  • Processing techniques of remote sensed image data using computer have been recognized very necessary techniques to all social fields, such as, environmental observation, land cultivation, resource investigation, military trend grasp and agricultural product estimation, etc. Especially, accurate classification and analysis to remote sensed image da are important elements that can determine reliability of remote sensed image data processing systems, and many researches have been processed to improve these accuracy of classification and analysis. Traditionally, remote sensed image data processing systems have been processed 2 or 3 selected bands in multiple bands, in this time, their selection criterions are statistical separability or wavelength properties. But, it have be bring up the necessity of bands selection method by data distribution characteristics than traditional bands selection by wavelength properties or statistical separability. Because data sensing environments change from multispectral environments to hyperspectral environments. In this paper for efficient data classification in multispectral bands environment, a band feature extraction method using the Rough sets theory is proposed. First, we make a look up table from training data, and analyze the properties of experimental multispectral image data, then select the efficient band using indiscernibility relation of Rough set theory from analysis results. Proposed method is applied to LANDSAT TM data on 2 June 1992. From this, we show clustering trends that similar to traditional band selection results by wavelength properties, from this, we verify that can use the proposed method that centered on data properties to select the efficient bands, though data sensing environment change to hyperspectral band environments.

  • PDF

Detection Algorithm for Cracks on the Surface of Tomatoes using Multispectral Vis/NIR Reflectance Imagery

  • Jeong, Danhee;Kim, Moon S.;Lee, Hoonsoo;Lee, Hoyoung;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • 제38권3호
    • /
    • pp.199-207
    • /
    • 2013
  • Purpose: Tomatoes, an important agricultural product in fresh-cut markets, are sometimes a source of foodborne illness, mainly Salmonella spp. Growth cracks on tomatoes can be a pathway for bacteria, so its detection prior to consumption is important for public health. In this study, multispectral Visible/Near-Infrared (NIR) reflectance imaging techniques were used to determine optimal wavebands for the classification of defect tomatoes. Methods: Hyperspectral reflectance images were collected from samples of naturally cracked tomatoes. To classify the resulting images, the selected wavelength bands were subjected to two-band permutations, and a supervised classification method was used. Results: The results showed that two optimal wavelengths, 713.8 nm and 718.6 nm, could be used to identify cracked spots on tomato surfaces with a correct classification rate of 91.1%. The result indicates that multispectral reflectance imaging with optimized wavebands from hyperspectral images is an effective technique for the classification of defective tomatoes. Conclusions: Although it can be susceptible to specular interference, the multispectral reflectance imaging is an appropriate method for commercial applications because it is faster and much less expensive than Near-Infrared or fluorescence imaging techniques.

심전도 패턴 판별을 위한 빈발 패턴 베이지안 분류 (Frequent Pattern Bayesian Classification for ECG Pattern Diagnosis)

  • 노기용;김원식;이헌규;이상태;류근호
    • 정보처리학회논문지D
    • /
    • 제11D권5호
    • /
    • pp.1031-1040
    • /
    • 2004
  • 심장의 활동을 기록한 심전도는 심장의 상태에 대한 가치 있는 임상 정보를 제공한다. 지금까지 심전도를 이용한 심장 질환 진단 알고리즘에 대한 많은 연구가 진행되어 왔으나, 심장 질환에 대한 진단 결과의 부 정확성으로 인해 심전계에서는 외국의 진단 알고리즘을 사용하고 있다. 이 논문에서는 심전도 데이터의 수집에서부터 전 처리 과정 그리고 데이터마이닝을 이용한 심장 질환 패턴 분류 기법을 제안한다. 이 패턴 분류기법은 빈발 패턴 베이지안이며 기존의 나이브 베이지안과 빈발 패턴 마이닝의 통합이다. 빈발 패턴 베이지안은 훈련단계에서 탐사된 빈발 패턴들을 사용하여 Product Approximation 구성하므로써 클래스 조건 독립 가정을 가진 나이브 베이지안의 단점을 해결한다.

Classification of Mental States Based on Spatiospectral Patterns of Brain Electrical Activity

  • Hwang, Han-Jeong;Lim, Jeong-Hwan;Im, Chang-Hwan
    • 대한의용생체공학회:의공학회지
    • /
    • 제33권1호
    • /
    • pp.15-24
    • /
    • 2012
  • Classification of human thought is an emerging research field that may allow us to understand human brain functions and further develop advanced brain-computer interface (BCI) systems. In the present study, we introduce a new approach to classify various mental states from noninvasive electrophysiological recordings of human brain activity. We utilized the full spatial and spectral information contained in the electroencephalography (EEG) signals recorded while a subject is performing a specific mental task. For this, the EEG data were converted into a 2D spatiospectral pattern map, of which each element was filled with 1, 0, and -1 reflecting the degrees of event-related synchronization (ERS) and event-related desynchronization (ERD). We evaluated the similarity between a current (input) 2D pattern map and the template pattern maps (database), by taking the inner-product of pattern matrices. Then, the current 2D pattern map was assigned to a class that demonstrated the highest similarity value. For the verification of our approach, eight participants took part in the present study; their EEG data were recorded while they performed four different cognitive imagery tasks. Consistent ERS/ERD patterns were observed more frequently between trials in the same class than those in different classes, indicating that these spatiospectral pattern maps could be used to classify different mental states. The classification accuracy was evaluated for each participant from both the proposed approach and a conventional mental state classification method based on the inter-hemispheric spectral power asymmetry, using the leave-one-out cross-validation (LOOCV). An average accuracy of 68.13% (${\pm}9.64%$) was attained for the proposed method; whereas an average accuracy of 57% (${\pm}5.68%$) was attained for the conventional method (significance was assessed by the one-tail paired $t$-test, $p$ < 0.01), showing that the proposed simple classification approach might be one of the promising methods in discriminating various mental states.