A POP system, which collects manufacturing data from the shop floors and supply them to higher level systems, should be maintained and upgraded according to the change of production environment such as new product introduction. This situation leads to the need of a cost-effective system development methodology. In this paper, a methodology based on the classification and the similarity comparison of manufacturing processes is proposed. In this, a new product is classified according to the similarity of its manufacturing processes, which enables recycling of existing system modules. The proposed methodology has been tested in the case of an electronics parts manufacturing company, where a POP system is implemented. The result shows that the proposed methodology can save time and efforts for system implementation.
정보 기술 발전으로 인하여 제품 정보를 전달하는 방식이 오프라인과 2D중심에서 온라인과 3D로 이동하면서 효율적인 정보 전달을 위한 다양한 시도가 이루어지고 있다. 이러한 시도는 실물이 부재된 온라인 공간에서 단순히 제품의 정보를 전달하는 것에 그치지 않고 소비자에게 가상의 체험을 제공하면서 온라인 쇼핑의 다변화 및 활성화에 중요한 역할을 하고 있다. 360 제품 이미지는 피사체를 회전시켜 촬영하여 대상을 다양한 시점에서 입체적으로 볼 수 있는 실사 기반의 VR이다. 360 제품 이미지는 기존의 정지 이미지와 비교하여 대상물에 대해 풍부한 정보를 전달할 수 있다는 측면에서 주목받고 있다. 360 제품 이미지는 다양한 제작 요인에 의해 영향을 받으며, 이에 따라 이용자의 반응에 차이가 있으나 기술의 역사가 짧은 만큼 관련 연구 또한 미비하다. 따라서 본 연구에서는 360 제품 이미지의 제품의 형태와 소스 이미지의 수에 따라 변하는 이용자의 반응을 파악하고자 하였다. 이를 위해 온라인 쇼핑몰에서 많이 접할 수 있는 상품군 중 대표적인 제품들을 선정하여 360 제품 이미지를 제작하고 75인의 이용자를 대상으로 실험을 진행하였으며, 의미분별법을 적용한 실험 설문을 통해 360 제품 이미지에 대한 감성 반응을 분석하였다. 본 연구의 결과는 360 제품 이미지에 대한 수용자의 감성을 이해하고 파악하는데 기초 자료로 활용될 수 있을 것이다.
본 연구에서는 화상분석(image analysis)에 기반한 소프트 센서를 설계하고, 이를 색상-질감 특성을 가진 제품의 외관품질 자동분류에 적용하였다. 색상과 질감(texture)을 동시에 가진 화상을 분석하기 위해 다중해상도 다변량 화상분석(Multiresolutional Multivariate Image Analysis, MR-MIA) 기법을 이용하였으며, 자동 분류를 위한 감독 학습법(supervised learning)으로는 Fisher의 판별분석(Fisher's discriminant analysis)을 사용하였다. 잠재변수법의 하나인 Fisher의 판별분석을 사용하였기 때문에, 제품의 외관을 서로 다른 불연속적인 부류로의 분류할 수 있을 뿐 아니라, 연속적인 외관 변화를 일관적이고 정량적으로 추정함은 물론, 외관의 특성 해석 또한 가능하였다. 이 방법은 인조대리석 제조 공정에서 중간 및 최종 제품의 외관 품질을 자동으로 분류하는 데에 성공적으로 적용되었다.
JaHyung, Koo;LanMi, Hwang;HooHyun, Kim;TaeHee, Kim;JinHyang, Kim;HeeSeok, Song
KSII Transactions on Internet and Information Systems (TIIS)
/
제17권1호
/
pp.16-30
/
2023
The elderly population is increasing owing to a low fertility rate and an aging population. In addition, life expectancy is increasing, and the advancement of medicine has increased the importance of health to most people. Therefore, government and companies are developing and supporting smart healthcare, which is a health-related product or industry, and providing related services. Moreover, with the development of the Internet, many people are managing their health through online searches. The most convenient way to achieve such management is by consuming nutritional supplements or seasonal foods to prevent a nutrient deficiency. However, before implementing such methods, knowing the nutrient status of the individual is difficult, and even if a test method is developed, the cost of the test will be a burden. To solve this problem, we developed a questionnaire related to nutrient classification twice, based upon which an adaptive algorithm was designed. This algorithm was designed as a machine learning based algorithm for nutrient classification and its accuracy was much better than the other machine learning algorithm.
The purpose of this study was to find out criteria for classifying fashion brand from the consumer point of view. This was compared with the viewpoint of fashion business practice in order to develop strategy of fashion brands and to manage brand effectively and systematically, and to suggest theoretical frame for application of these criteria. This study was researched as the succeeding study of a model of criteria for classifying fashion brands from the viewpoint of fashion business practice. Survey was used as a research method. The subjects were 422 women who were 20-30 years old and living in and near Seoul. Questionnaires were developed based on 37 fashion brands' classification criteria by means of pre-survey, and SPSS package and LISREL program were used to analyze the data. As a result of factor analysis considering 37 classification criteria, 8 factors were identified as classification criteria. They were as follows; the level of brand form, the level of product concept, the level of management item, the level of brand sales ability, the level of customer management, the level of brand advertising and awareness, the level of brand value, and the level of product lead ability. All of criteria were correlated to each other. The effective method to classify fashion brands was proposed by establishing the model of the relationship of the values of 7 criteria and by proving it with the structure equation model analysis. The model of criteria for classifying fashion brands that was suggested on this study was proved by the structure equation model analysis. In this study, from a consumer's point of view we suggested a theoretical framework describing which criteria would be selected to classify and utilize fashion brand market. This model can be used to select the most efficient classification criteria and classify them hierarchically instead of selecting only one among some factors that complex and interactional and classifying.
Traditionally, one uses a method of straight-line recognition to evaluate quality of product or service. One can satisfy with the product or service if their physical requirement of are met some criterions and can not satisfy them if their physical requirement are not met. Kano, et al(1984) introduce two dimensional Quality model to evaluate quality of product or service. They classify Quality Characteristic of product and service to three categories; satisfying quality, attractive quality, expected quality. In this paper, 17 evaluation features in 6 categories of smart-card are obtained from Focus-interview and Brainstorming and classified into 3 categories of quality model by Kano's two dimensional method. This classification is expected to provide a guideline for evaluation of smart-card.
Processing techniques of remote sensed image data using computer have been recognized very necessary techniques to all social fields, such as, environmental observation, land cultivation, resource investigation, military trend grasp and agricultural product estimation, etc. Especially, accurate classification and analysis to remote sensed image da are important elements that can determine reliability of remote sensed image data processing systems, and many researches have been processed to improve these accuracy of classification and analysis. Traditionally, remote sensed image data processing systems have been processed 2 or 3 selected bands in multiple bands, in this time, their selection criterions are statistical separability or wavelength properties. But, it have be bring up the necessity of bands selection method by data distribution characteristics than traditional bands selection by wavelength properties or statistical separability. Because data sensing environments change from multispectral environments to hyperspectral environments. In this paper for efficient data classification in multispectral bands environment, a band feature extraction method using the Rough sets theory is proposed. First, we make a look up table from training data, and analyze the properties of experimental multispectral image data, then select the efficient band using indiscernibility relation of Rough set theory from analysis results. Proposed method is applied to LANDSAT TM data on 2 June 1992. From this, we show clustering trends that similar to traditional band selection results by wavelength properties, from this, we verify that can use the proposed method that centered on data properties to select the efficient bands, though data sensing environment change to hyperspectral band environments.
Purpose: Tomatoes, an important agricultural product in fresh-cut markets, are sometimes a source of foodborne illness, mainly Salmonella spp. Growth cracks on tomatoes can be a pathway for bacteria, so its detection prior to consumption is important for public health. In this study, multispectral Visible/Near-Infrared (NIR) reflectance imaging techniques were used to determine optimal wavebands for the classification of defect tomatoes. Methods: Hyperspectral reflectance images were collected from samples of naturally cracked tomatoes. To classify the resulting images, the selected wavelength bands were subjected to two-band permutations, and a supervised classification method was used. Results: The results showed that two optimal wavelengths, 713.8 nm and 718.6 nm, could be used to identify cracked spots on tomato surfaces with a correct classification rate of 91.1%. The result indicates that multispectral reflectance imaging with optimized wavebands from hyperspectral images is an effective technique for the classification of defective tomatoes. Conclusions: Although it can be susceptible to specular interference, the multispectral reflectance imaging is an appropriate method for commercial applications because it is faster and much less expensive than Near-Infrared or fluorescence imaging techniques.
심장의 활동을 기록한 심전도는 심장의 상태에 대한 가치 있는 임상 정보를 제공한다. 지금까지 심전도를 이용한 심장 질환 진단 알고리즘에 대한 많은 연구가 진행되어 왔으나, 심장 질환에 대한 진단 결과의 부 정확성으로 인해 심전계에서는 외국의 진단 알고리즘을 사용하고 있다. 이 논문에서는 심전도 데이터의 수집에서부터 전 처리 과정 그리고 데이터마이닝을 이용한 심장 질환 패턴 분류 기법을 제안한다. 이 패턴 분류기법은 빈발 패턴 베이지안이며 기존의 나이브 베이지안과 빈발 패턴 마이닝의 통합이다. 빈발 패턴 베이지안은 훈련단계에서 탐사된 빈발 패턴들을 사용하여 Product Approximation 구성하므로써 클래스 조건 독립 가정을 가진 나이브 베이지안의 단점을 해결한다.
Classification of human thought is an emerging research field that may allow us to understand human brain functions and further develop advanced brain-computer interface (BCI) systems. In the present study, we introduce a new approach to classify various mental states from noninvasive electrophysiological recordings of human brain activity. We utilized the full spatial and spectral information contained in the electroencephalography (EEG) signals recorded while a subject is performing a specific mental task. For this, the EEG data were converted into a 2D spatiospectral pattern map, of which each element was filled with 1, 0, and -1 reflecting the degrees of event-related synchronization (ERS) and event-related desynchronization (ERD). We evaluated the similarity between a current (input) 2D pattern map and the template pattern maps (database), by taking the inner-product of pattern matrices. Then, the current 2D pattern map was assigned to a class that demonstrated the highest similarity value. For the verification of our approach, eight participants took part in the present study; their EEG data were recorded while they performed four different cognitive imagery tasks. Consistent ERS/ERD patterns were observed more frequently between trials in the same class than those in different classes, indicating that these spatiospectral pattern maps could be used to classify different mental states. The classification accuracy was evaluated for each participant from both the proposed approach and a conventional mental state classification method based on the inter-hemispheric spectral power asymmetry, using the leave-one-out cross-validation (LOOCV). An average accuracy of 68.13% (${\pm}9.64%$) was attained for the proposed method; whereas an average accuracy of 57% (${\pm}5.68%$) was attained for the conventional method (significance was assessed by the one-tail paired $t$-test, $p$ < 0.01), showing that the proposed simple classification approach might be one of the promising methods in discriminating various mental states.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.