• Title/Summary/Keyword: Product Supply

Search Result 880, Processing Time 0.026 seconds

Recent Research Trends of Supercapacitors for Energy Storage Systems (에너지 저장시스템을 위한 슈퍼커패시터 최신 연구 동향)

  • Son, MyungSuk;Ryu, JunHyung
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.277-290
    • /
    • 2021
  • A supercapacitor, also called an ultracapacitor or an electrochemical capacitor, stores electrochemical energy by the adsorption/desorption of electrolytic ions or a fast and reversible redox reaction at the electrode surface, which is distinct from the chemical reaction of a battery. A supercapacitor features high specific power, high capacitance, almost infinite cyclability (~ 100,000 cycle), short charging time, good stability, low maintenance cost, and fast frequency response. Supercapacitors have been used in electronic devices to meet the requirements of rapid charging/discharging, such as for memory back-up, and uninterruptible power supply (UPS). Also, their use is being extended to transportation and large industry applications that require high power/energy density, such as for electric vehicles and power quality systems of smart grids. In power generation using intermittent power sources such as solar and wind, a supercapacitor is configured in the energy storage system together with a battery to compensate for the relatively slow charging/discharging time of the battery, to contribute to extending the lifecycle of the battery, and to improve the system power quality. This article provides a concise overview of the principles, mechanisms, and classification of energy storage of supercapacitors in accordance with the electrode materials. Also, it provides a review of the status of recent research and patent, product, and market trends in supercapacitor technology. There are many challenges to be solved to meet industrial demands such as for high voltage module technologies, high efficiency charging, safety, performance improvement, and competitive prices.

Development of Fermentation Process of Ginseng Leaf Extraction Probiotic Strain and Characterization of Product Quality (프로바이오틱 균주에 의한 인삼 잎 추출물 발효공정 확립 및 생성물의 품질 특성분석)

  • Hur, Sang-Sun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.1213-1223
    • /
    • 2018
  • This study was carried out to investigate extraction efficiency by microwave for extraction of pesticide residues and the bioconversion of ginsenosides of ginseng leaf by using various lactic acid bacteria in order to promote the utilization of ginseng leaf. The hexane extraction by microwave of tolclofos-methyl and azoxystrobin in ginseng leaf was efficient. The optimal condition for extraction of tolclofos-methyl and azoxystrobin in ginseng leaf by microwave was 50 to 95 watts of power supply, 3 minutes of extraction.The gisenosides Rg1 and Rb1 contents have decreased, while the Rh1, Rg3, Rk1 and Rh2 have increased due to fermentation. The ginsenosides Rg3 of the fermented ginseng leaf has increased and the contents were $70.62{\sim}77.61{\mu}g/g$(control $2.77{\mu}g/g$). The total phenolic acid content and electron donating ability of the ginseng leaf have totally decreased after 7 days of fermentation. The total phenolic acid contents of the fermented ginseng leaf with various lactic acid bacteria did not show any tendency as different strains.

Analysis the Use of Concrete Fine Aggregates of Coal Gasification Slag (콘크리트용 잔골재로서 석탄가스화 용융슬래그(CGS)의 활용성 분석)

  • Park, Kyung-Taek;Han, Min-Cheol;Hyun, Seung-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.2
    • /
    • pp.101-108
    • /
    • 2019
  • This study is analysis of the utilization as a concrete fine aggregate on CGS, a by-product of Integrated coal gasification combined cycle(IGCC). That is, in KS F 2527 "Concrete aggregate," properties of 1~12times to CGS were evaluated, focusing on quality items corresponding to natural aggregate sand(NS) and melted slag aggregate sand(MS). As a result, the distribution of grain shape, safety and expansion were all satisfied with KS standards by physical properties, but the quality was unstable at 7~12times of water absorption ratio and absolute dry density. The particle size distribution was unstable due to asymmetry distribution of coarse particles, and particles were too thick for 7~12times. The passing ratio of 0.08mm sieve was also out of the KS standard at part factor of 7~12times, but chloride content, clay contents, coal and lignite were all satisfactory. Meanwhile, chemical composition was satisfactory except for $SO_3$ in 1~6times, and content and amount of harmful substances were all within the specified value except for F in 7~12times. As a result of SEM analysis, the surface quality and porosity were 7~12times more than 1~6times, and it was the quality was degraded. Therefore, it is necessary to reduce the quality deviation by using separate measures in order to utilize it as concrete aggregate in the future, and if it is premixed with fine quality aggregate, it will contribute positively to solve aggregate supply shortage and utilize circulation resources.

Research on the ancient iron technology of Jungwon, the center of iron industry (제철산업의 중심 중원에서 고대 제철기술을 탐구하다)

  • Do, Eui Chul;Lee, Eun Woo;Seok, Je Seop;Jang, Min Seong
    • Korean Journal of Heritage: History & Science
    • /
    • v.48 no.1
    • /
    • pp.148-165
    • /
    • 2015
  • Iron was one of the most influential factors for formation and development of ancient countries. The diffusion of ironware had increased agricultural productivity and brought about military technical revolution. Needless to say, the rise and fall of the countries depended on the possession of stable iron production. Raw materials and fuels are the key factors for mass production of iron and a transportation route is essential to supply the goods. Jungwon area satisfies the three factors. There are many iron manufacture sites such as Jincheon Seokjang-ri Gusan-ri, and Chunju Chilgeum-dong Tangeumdae earthen ramparts in the Jungwon area. In order to study the ancient iron manufacture technique, reconstitution experiment was carried out using restored furnace which was made based on the Jincheon Seokjang-ri B-23 furnace. Some notable results were identified with the experiment as in the followings. Firstly, a roasting process has a connection with the decrease of hardness of the iron ore. Secondly, melting of the blast pipe as well as the formation of product within the furnace had a crucial effect on the cessation of the experiment. Thirdly, reduced iron in various locations within the furnace prove that there was enough reducing environment during the working. Not only melting point but also properties of iron can vary depending on the carbon contents. For the reason, formation of approximate environment in which iron can react to the chalcoal is the most important factor in terms of iron manufacture.

Analysis of 2019 Domestic Aggregate Production in Korea (I) (2019년도 국내 골재 수급 분석 (I))

  • Hong, Sei Sun;Lee, Jin Young
    • Economic and Environmental Geology
    • /
    • v.53 no.6
    • /
    • pp.755-769
    • /
    • 2020
  • In 2019, about 134 million ㎥ of aggregate was produced in an estimated 880 quarries and pits in 17 metropolitan governments. Leading producing metropolitan cities were Gyeonggi-do, Gyeongsangnam-do, Chungcheongbuk-do, Gangwon-do, Gyeongsangbuk- do, Chungcheongnam-do, in order decreasing volume, which together accounted for about 71% of total product. Of the total domestic aggregates produced in 2019, about 31 % was sand and about 69% was gravel. It estimated that of the 134 million ㎥ of aggregates in Korea in 2019, about 50.3% was produced by screening crushed aggregate by 41.4% by forest aggregate, 3.3% by land aggregate, 1.7% by sea aggregate and 1.7% by washing each other, and 0.7% by river aggregate. This indicates that screening crushed aggregate and forest aggregate are the main producers of domestic aggregates. The most crushed and forest aggregate was extracted at the Gyeonggi-do and Gyeongsangnam-do, respectively. Land aggregate was mainly extracted at Gyeongsangbuk-do and Gangwon-do. Therefore, in the future supply and demand of aggregate resources, it is judged that there should be a primary policy direction for screening crushed and forest aggregate.

An Investigation on Data Needs and Data Reuse Behavior in the Field of Social Sciences (사회과학 분야 연구자의 데이터요구와 데이터 재이용 행위에 관한 연구)

  • Kim, NaYon;Chung, EunKyung
    • Journal of the Korean Society for information Management
    • /
    • v.37 no.4
    • /
    • pp.1-26
    • /
    • 2020
  • In today's increasingly data-intensive academic environment, data is becoming the foundation of academic communication as a research outcome rather than a research by-product. However, there is a limit to guaranteeing actual data reuse only by expanding the data supply or securing accessibility. In order to overcome this, it is necessary to understand the data reuse behavior and data needs in-depth. Therefore, this study attempted to identify the major data reuse behavior and data needs among researchers. To this end, the authors of KCI papers among the data reuse documents of the Korea Social Science Data Archive (KOSSDA) for the past 3 years were targeted. An in-depth interview was conducted with 12 researchers who accepted the interview. As a result, factors considered when reusing data were personal, economic, technical, and social aspects, and it was found that the data itself was used or contextual information of the data was used depending on the purpose of data reuse. The path to acquiring data is a web-based source of information, and a path through informal communication can also be found. In terms of the data needs, it was found that they prefer English, the United States, and institutional producers. Also they have a clear preference for quantitative data from an interviewer-filled interpersonal interview survey method, rich metadata along with raw data, and data that contains identification information. However, due to the lack of confidence in the value, it is negative for the use of data with controlled access and use, and it is difficult to confirm a clear preference because there is no similar data available for selection in terms of size and freshness.

A study on the estimation of onion's bulb weight using multi-level model (다층모형을 활용한 양파 구중 추정 연구)

  • Kim, Junki;Choi, Seung-cheon;Kim, Jaehwi;Seo, Hong-Seok
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.6
    • /
    • pp.763-776
    • /
    • 2020
  • Onions show severe volatility in production and price because crop conditions highly depend on the weather. The government has designated onions as a sensitive agricultural product, and prepared various measures to stabilize the supply and demand. First of all, preemptive and reliable information on predicting onion production is essential to implement appropriate and effective measures. This study aims to contribute to improving the accuracy of production forecasting by developing a model to estimate the final weight of onions bulb. For the analysis, multi-level model is used to reflect the hierarchical data characteristics consisting of above-ground growth data in individual units and meteorological data in parcel units. The result shows that as the number of leaf, stem diameter, and plant height in early May increase, the bulb weight increases. The amount of precipitation as well as the number of days beyond a certain temperature inhibiting carbon assimilation have negative effects on bulb weight, However, the daily range of temperature and more precipitation near the harvest season are statistically significant as positive effects. Also, it is confirmed that the fitness and explanatory power of the model is improved by considering the interaction terms between level-1 and level-2 variables.

Empirical study on inhibition effect of scale and rust in tap-water line by zinc ionization device (아연 이온화 장치에 의한 상수배관 내 스케일 및 녹 생성 억제효과 실증 연구)

  • Yum, Kyung-Taek;Choi, Jung-Wook;Yang, Sung-Bong;Shim, Hak-Sup;Yu, Mee-Seon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.6
    • /
    • pp.465-476
    • /
    • 2021
  • Scale and rust generation in water pipes is a common phenomenon when cast iron water pipes have been used for a long time. A physical water treatment device is known among various means for suppressing rust in a water pipe, and a zinc ionization device for putting zinc metal into a pipe and emitting the zinc cation into water is one of such devices. This research measured the amount of zinc ion generated, which is known to exhibit an effect of inhibiting rust and scale generation in a pipe, and examined the scale and rust inhibition effect of the ionization device installed for ground or building water supply. In the case of distilled water, the concentration of zinc ion increased by circulating water in the ionization device several times, and it was verified to be hundreds of ㎍/L, and in the case of discharging ground or tap water, it was verified to be tens of ㎍/L. In addition, a verification pipe was installed to confirm the change inside the pipe before and after installation of the zinc ionization device, and the internal condition of the pipe was observed 3 months to several years after installation. It was confirmed that the corrosion area of the surface of the pipe was no longer increased by installing a corrosion inhibitor, and if the pipe was already filled with corrosion products, the amount of corrosion products gradually decreased every year after installation. The phenomenon of fewer corrosion products could be interpreted as expanding the space in the pipe due to the corrosion product as Fe2O3 adhered to the inner surface of the pipe and turned into a smaller black Fe3O4. In addition, we found that scale such as CaCO3 together in the corrosion by-products gradually decreased with the attachment of the ionization device.

A Comparative Study on Consumers' Perception of National Food Plan (국가 푸드플랜에 대한 소비자의 인식 수준 비교 연구)

  • Han, Jeong-yeon;Yoon, Hei-ryeo
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.10
    • /
    • pp.252-260
    • /
    • 2022
  • The government is emphasizing for a National Food Plan with the aim of establishing a system that can supply healthy and high-quality food to the people. Since consumers' interest and participation are important in vitalizing local food plans, comparative studies on consumer perceptions of food plans are needed. Accordingly, the purpose of the study is to enhance consumers' awareness and understanding of food plans, and to investigate and analyze their perceptions of agriculture and rural areas, and agricultural food consumption behavior according to the level of consumer awareness. As a result of the analysis, consumers were classified into three groups based on the food plan-related awareness score. In terms of marital status unmarried people had a high proportion in the lower group, and married people had a high proportion in the upper group. The higher the perception of food plans, the higher the perception of the importance of eco-friendly or animal welfare foods and the importance of brands when purchasing agricultural and livestock products. The higher the awareness of food plans, the higher the interest of all aspects of food plans. In this study, it can be seen that there were differences in demographic characteristics according to the food plan recognition level groups, in awareness of food plan-related agriculture, and agricultural food product consumption behavior.

Development of analytical method for the isotope purity of pure D2 gas using high-precision magnetic sector mass spectrometer

  • Chang, Jinwoo;Lee, Jin Bok;Kim, Jin Seog;Lee, Jin-Hong;Hong, Kiryong
    • Analytical Science and Technology
    • /
    • v.35 no.5
    • /
    • pp.205-211
    • /
    • 2022
  • Deuterium (D) is an isotope with one more neutron number than hydrogen (H). Heavy elements rarely change their chemical properties with little effect even if the number of neutrons increases, but low-mass elements change their vibration energy, diffusion rate, and reaction rate because the effect cannot be ignored, which is called an isotope effect. Recently, in the semiconductor and display industries, there is a trend to replace hydrogen gas (H2) with deuterium gas (D2) in order to improve process stability and product quality by using the isotope effect. In addition, as the demand for D2 in industries increases, domestic gas producers are making efforts to produce and supply D2 on their own. In the case of high purity D2, most of them are produced by electrolysis of heavy water (D2O), and among D2, hydrogen deuteride (HD) molecules are present as isotope impurities. Therefore, in order to maximize the isotope effect of hydrogen in the electronic industry, HD, which is an isotope impurity of D2 used in the process, should be small amount. To this end, purity analysis of D2 for industrial processing is essential. In this study, HD quantitative analysis of D2 for high purity D2 purity analysis was established and hydrogen isotope RM (Reference material) was developed. Since hydrogen isotopes are difficult to analyze with general gas analysis instrument, they were analyzed using a high-precision mass spectrometer (Gas/MS, Finnigan MAT271). High purity HD gas was injected into Gas/MS, sensitivity was determined by a signal according to pressure, and HD concentrations in two bottles of D2 were quantified using the corresponding sensitivity. The amount fraction of HD in each D2 was (4518 ± 275) μmol/mol, (2282 ± 144) μmol/mol. D2, which quantifies HD amount using the developed quantitative analysis method, will be manufactured with hydrogen isotope RM and distributed for quality management and maintenance of electronic industries and gas producers in the future.