• 제목/요약/키워드: Product Risk Management

검색결과 323건 처리시간 0.028초

Auto-PEEP이 존재하는 환자에서 호흡 일에 대한 External PEEP의 효과 (The Effect of External PEEP on Work of Breathing in Patients with Auto-PEEP)

  • 진재용;임채만;고윤석;박평환;최종무;이상도;김우성;김동순;김원동
    • Tuberculosis and Respiratory Diseases
    • /
    • 제43권2호
    • /
    • pp.201-209
    • /
    • 1996
  • 연구배경: Auto-PEEP 혹은 intrinsic PEEP은 호기말에 폐용적이 전체 호흡기계의 이완 용적으로 돌아오지 않음으로써, 증가된 호흡기계의 탄성반도압만큼 호기말 폐포내압(alveolar pressure) 이양의 값을 보이는 것을 말한다. Auto-PEEP 이 존재하는 만성폐쇄성폐질환 환자에게 externa1 PEEP을 적용하면 환자의 호흡 일을 줄일 수 있어서, 질환의 급성악화시 혹은 기계호흡으로부터의 이탈시 환자의 자발호흡을 보조하기 위한 요법으로 제시되고 있다. 이에 기계호흡중인 환자에서 auto-PEEP의 존재가 호흡 일에 미치는 영향을 알아보고, externa1 PEEP의 사용이 auto- PEEP에 의해 증가된 호흡 일을 줄이는지를 알아보기 위해 본 연구를 시행하였다. 방법: 호흡부전으로 기계호흡을 하고 있는 환자 15명을 대상으로 연구가 이루어 졌으며, 이들 7명에서 auto-PEEP이 관찰되었고(auto-PPEP군) 8명에서 auto-PEEP이 auto-PEEP군). 양군 간의 환자의 호흡역학적 지표의 차이를 조사하였으며, auto-PEEP이 존재하는 환자들에 대해 3cm $H_2O$의 external PEEP을 적용한 뒤 호흡역학적 지표들의 변화를 조사하였다. 호흡역학적 지표는 상시호흡량(tidal volume, 이하 $V_T$), 분당 호흡수, 분당환기량 (minute ventilation 이하 $V_E$), 최고흡기유량(peak inspiratory flow rate, 이하 PIFR), 최고호기유행peak expiratory flow rate, 이하 PEFR), 최고흡기압(peak inspiratory pressure, 이하 PIP), $T_I/T_{TOT}$, auto-PEEP, 폐 동적탄성 (dynamic compliance of lung, 이하 Cdyn), 호기 기도저항(expiratory airway resistance, 이하 RAWe), 평균 기도저항(mean airway resistance, 이하 RAWm), $P_{0.1}$, 환자에 의해 수행되는 호흡 일 (work of breathing performed by patient, 이하 호흡 일), pressure-time product(이하 PTP)등이었다.

  • PDF

국제통화제도의 개혁과 G20 (International Monetary System Reform and the G20)

  • 조윤제
    • KDI Journal of Economic Policy
    • /
    • 제32권4호
    • /
    • pp.153-195
    • /
    • 2010
  • 세계금융위기의 근본적인 원인은 시장과 제도의 괴리에서 나오는 '제도의 실패'라고 할 수 있다. 특히 현재의 국제통화제도는 무제도(non-system)나 다름없다고 할 수 있다. 현재 당면하고 있는 국제통화제도의 문제점들을 볼 때 개편 방향의 핵심은 (1) 수요 측면에서는 과대한 외환보유고를 축적하려는 인센티브를 어떻게 줄일 수 있을 것인가 하는 것이며, (2) 공급 측면에서는 현재 미국 달러화에 주로 의존하고 있는 제도를 탈피, 보다 다양한 국제통화 혹은 대체적 외화준비자산(SDR을 포함하여)으로 전환해 나가거나 혹은 보다 근본적인 개혁방안으로서 새로운 세계통화(global reserve currency)를 창출하는 것이다. 그리고 (3) 이러한 변화를 뒷받침 하기 위해 필요한 기구적 개편, 특히 IMF의 개혁을 추진하는 것이다. 이러한 개편은 현실적 국제역학관계로 볼 때 오직 점진적으로 일어날 수 있는 것이다. 따라서 현재 세계경제의 안정적 성장을 위해 중요한 것은 이러한 개편을 점진적으로 추진함과 동시에 주요국 간의 거시경제정책공조를 이뤄 나가는 것이다. 이러한 과정을 원활히 해나가기 위해서는 효율적인 세계경제 지배구조를 갖추는 것이 필수적이다. 세계금융위기 이후 출범한 G20 정상회의가 효율적인 협의체가 되기 위해서는 의사결정이 원활히 이루어질 수 있는 방안과 장치를 세워나갈 필요가 있다. 사무국(secretariat) 혹은 그와 유사한 기능을 행사할 수 있는 조직의 설립과 위원회제도 같은 것을 활용할 필요가 있을 것으로 보인다.

  • PDF

다분류 SVM을 이용한 DEA기반 벤처기업 효율성등급 예측모형 (The Prediction of DEA based Efficiency Rating for Venture Business Using Multi-class SVM)

  • 박지영;홍태호
    • Asia pacific journal of information systems
    • /
    • 제19권2호
    • /
    • pp.139-155
    • /
    • 2009
  • For the last few decades, many studies have tried to explore and unveil venture companies' success factors and unique features in order to identify the sources of such companies' competitive advantages over their rivals. Such venture companies have shown tendency to give high returns for investors generally making the best use of information technology. For this reason, many venture companies are keen on attracting avid investors' attention. Investors generally make their investment decisions by carefully examining the evaluation criteria of the alternatives. To them, credit rating information provided by international rating agencies, such as Standard and Poor's, Moody's and Fitch is crucial source as to such pivotal concerns as companies stability, growth, and risk status. But these types of information are generated only for the companies issuing corporate bonds, not venture companies. Therefore, this study proposes a method for evaluating venture businesses by presenting our recent empirical results using financial data of Korean venture companies listed on KOSDAQ in Korea exchange. In addition, this paper used multi-class SVM for the prediction of DEA-based efficiency rating for venture businesses, which was derived from our proposed method. Our approach sheds light on ways to locate efficient companies generating high level of profits. Above all, in determining effective ways to evaluate a venture firm's efficiency, it is important to understand the major contributing factors of such efficiency. Therefore, this paper is constructed on the basis of following two ideas to classify which companies are more efficient venture companies: i) making DEA based multi-class rating for sample companies and ii) developing multi-class SVM-based efficiency prediction model for classifying all companies. First, the Data Envelopment Analysis(DEA) is a non-parametric multiple input-output efficiency technique that measures the relative efficiency of decision making units(DMUs) using a linear programming based model. It is non-parametric because it requires no assumption on the shape or parameters of the underlying production function. DEA has been already widely applied for evaluating the relative efficiency of DMUs. Recently, a number of DEA based studies have evaluated the efficiency of various types of companies, such as internet companies and venture companies. It has been also applied to corporate credit ratings. In this study we utilized DEA for sorting venture companies by efficiency based ratings. The Support Vector Machine(SVM), on the other hand, is a popular technique for solving data classification problems. In this paper, we employed SVM to classify the efficiency ratings in IT venture companies according to the results of DEA. The SVM method was first developed by Vapnik (1995). As one of many machine learning techniques, SVM is based on a statistical theory. Thus far, the method has shown good performances especially in generalizing capacity in classification tasks, resulting in numerous applications in many areas of business, SVM is basically the algorithm that finds the maximum margin hyperplane, which is the maximum separation between classes. According to this method, support vectors are the closest to the maximum margin hyperplane. If it is impossible to classify, we can use the kernel function. In the case of nonlinear class boundaries, we can transform the inputs into a high-dimensional feature space, This is the original input space and is mapped into a high-dimensional dot-product space. Many studies applied SVM to the prediction of bankruptcy, the forecast a financial time series, and the problem of estimating credit rating, In this study we employed SVM for developing data mining-based efficiency prediction model. We used the Gaussian radial function as a kernel function of SVM. In multi-class SVM, we adopted one-against-one approach between binary classification method and two all-together methods, proposed by Weston and Watkins(1999) and Crammer and Singer(2000), respectively. In this research, we used corporate information of 154 companies listed on KOSDAQ market in Korea exchange. We obtained companies' financial information of 2005 from the KIS(Korea Information Service, Inc.). Using this data, we made multi-class rating with DEA efficiency and built multi-class prediction model based data mining. Among three manners of multi-classification, the hit ratio of the Weston and Watkins method is the best in the test data set. In multi classification problems as efficiency ratings of venture business, it is very useful for investors to know the class with errors, one class difference, when it is difficult to find out the accurate class in the actual market. So we presented accuracy results within 1-class errors, and the Weston and Watkins method showed 85.7% accuracy in our test samples. We conclude that the DEA based multi-class approach in venture business generates more information than the binary classification problem, notwithstanding its efficiency level. We believe this model can help investors in decision making as it provides a reliably tool to evaluate venture companies in the financial domain. For the future research, we perceive the need to enhance such areas as the variable selection process, the parameter selection of kernel function, the generalization, and the sample size of multi-class.