• Title/Summary/Keyword: Product Ion Scan

검색결과 4건 처리시간 0.018초

ESI-MS/MS를 이용한 아실카르니틴과 아미노산의 정량분석 (Quantitative Analysis of Acylcarnitines and Amino Acids Using ESI-MS/MS)

  • 김호현;한상범;윤혜란
    • 분석과학
    • /
    • 제14권5호
    • /
    • pp.384-391
    • /
    • 2001
  • 본 연구에서는 ESI-MS/MS를 이용해 혈액내에서 아실카르니틴과 아미노산을 신속하게 정량분석하는 방법을 개발하였다. 아실카르니틴과 아미노산은 3N butanolic hydrogen chloride를 사용하여 유도체화 과정을 거친 뒤 이중질량분석기로 분석하였다. 아실카르니틴은 precursor 85 ion scan을 사용하여 분석하였고, 아미노산들중 알라닌, 발린, 루신/이소루신, 메티오닌, 페닐알라닌, 타이로신, 아스파르트산, 글루탐산 등은 neutral loss 102 scan, 오르니틴과 시트롤린은 neutral loss 119 scan, 글리신은 neutral loss 56 scan, 아르기닌은 neutral loss 161 scan 그리고 아르기니노석시닉산은 product ion 459 scan을 사용하여 분석하였다. 이 방법은 일반적인 액체 크로마토그래피나 아미노산 분석기에 비해서 시료의 전처리가 비교적 간단하며, 높은 감도와 좋은 재현성을 보여주었다.

  • PDF

GC-TSQ CI 분석법을 이용한 제32차 OPCW 숙련도 시험 시료 분석 연구 (Analysis Study on 32nd OPCW Proficiency Test Sample with GC-TSQ CI)

  • 김현석;정창희;이용한
    • 한국군사과학기술학회지
    • /
    • 제17권6호
    • /
    • pp.828-835
    • /
    • 2014
  • GC-TSQ CI technique was applied for analysis of samples for the $32^{nd}$ OPCW proficiency test. Eight chemical weapon convention(CWC) related chemicals were identified by product ion mode analysis with GC-TSQ in the samples. Choice of specific precursor ion made it possible to supply selective total ion chromatograms(TICs) of target molecule. GC-TSQ CI anaylsis technique was useful method for chemical warfare agent verification because analysis selectivity was improved by choice of mother molecule as precursor ion and gave mass spectra.

Application of Fast Atom Bombardment Collision-induced Dissociation Tandem Mass Spectrometry for Structural identification of Glycerolipids Isolated From Marine Sponge

  • Lee, Sun-Young;Hong, Joo-Yeon;Jung, Jee-H.;Hong, Jong-Ki
    • Mass Spectrometry Letters
    • /
    • 제2권1호
    • /
    • pp.8-11
    • /
    • 2011
  • Two types of glycerolipids [monoacylglycerols (MAG) and cyclitols] were isolated by reversed phase high-performance liquid chromatography from the methanol extracts of a marine sponge, and analyzed by fast atom bombardment mass spectrometry (FAB-MS) in positive-ion mode. FAB mass spectra of these compounds yielded protonated molecules $[M + H]^+$ and abundant sodiated molecules $[M + Na]^+$ from a mixture of 3-nitrobenzyl alcohol and NaI. The structures of these compounds were elucidated by FAB-collisional-induced dissociation (CID)-tandem mass spectrometry. We carried out collision-indused dissociation (CID) of these lipids in B/E-linked scan mode. The CID B/E-linked scan of $[M + H]^+$ and $[M + Na]^+$ precursor ions resulted in the formation of numerous characteristic product ions through a series of dissociative processes. The product ions formed by charge-remote fragmentation (CRF) provided important information for the identification of the acyl chain structure substituted at the glycerol backbone. Some of the product the ions were diagnostic for the presence of a glycerol backbone or acyl chain structure.

자기공명(M.R.)진단법의 특징 및 그 영상기전의 이해 (Characteristics of Magnetic Resonance(M.R.) and Comprehension of its Imaging Mechanism)

  • 장재천;황미수;김선용
    • Journal of Yeungnam Medical Science
    • /
    • 제4권1호
    • /
    • pp.1-15
    • /
    • 1987
  • Magnetic Resonance (M.R.) is rapidly emerging technique that provides high quality images and potentially provides much more diagnostic information than do conventional imaging modalities. M.R.I. is conceptually quite different from currently used imaging methods. The complex nature of M.R.I. allows a great deal of flexibility in image product ion and available information, and key points are as follows. 1. M.R.I. offers a non-invasive technique with which to gene rate in vivo human images without ionizing radiation and with no known adverse biological effects. 2. Imaging mechanism of M.R.I. is quite different from conventional imaging modality and for more accurate diagnostic application, It is necessary for physician to understand imaging mechanism of M.R.I. 3. M.R. makes available basic chemical parameters that may provide to be useful for diagnostic medical imaging and more specific pathophysiologic information which are not available by alternate techniques. 4. M.R. can be produced by number of different methods. This flexibility allows the imaging technique to be applicated for particular clinical purpose. Multiplanar and three dimensional imaging may extend the imaging process beyond the single section available with current CT. 5. Future directions include efforts to; a. Further development of hard ware b. More fasternning scan time c. Respiratory and cardiac gated imaging d. Imaging of additional nuclei except hydrogen e. Further development of contrast media f. M.R. in vivo spectroscopy g. Real time M.R. imaging.

  • PDF