• Title/Summary/Keyword: Product Feature Extraction

Search Result 37, Processing Time 0.032 seconds

Intensified Sentiment Analysis of Customer Product Reviews Using Acoustic and Textual Features

  • Govindaraj, Sureshkumar;Gopalakrishnan, Kumaravelan
    • ETRI Journal
    • /
    • v.38 no.3
    • /
    • pp.494-501
    • /
    • 2016
  • Sentiment analysis incorporates natural language processing and artificial intelligence and has evolved as an important research area. Sentiment analysis on product reviews has been used in widespread applications to improve customer retention and business processes. In this paper, we propose a method for performing an intensified sentiment analysis on customer product reviews. The method involves the extraction of two feature sets from each of the given customer product reviews, a set of acoustic features (representing emotions) and a set of lexical features (representing sentiments). These sets are then combined and used in a supervised classifier to predict the sentiments of customers. We use an audio speech dataset prepared from Amazon product reviews and downloaded from the YouTube portal for the purposes of our experimental evaluations.

Improved Bimodal Speech Recognition Study Based on Product Hidden Markov Model

  • Xi, Su Mei;Cho, Young Im
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.164-170
    • /
    • 2013
  • Recent years have been higher demands for automatic speech recognition (ASR) systems that are able to operate robustly in an acoustically noisy environment. This paper proposes an improved product hidden markov model (HMM) used for bimodal speech recognition. A two-dimensional training model is built based on dependently trained audio-HMM and visual-HMM, reflecting the asynchronous characteristics of the audio and video streams. A weight coefficient is introduced to adjust the weight of the video and audio streams automatically according to differences in the noise environment. Experimental results show that compared with other bimodal speech recognition approaches, this approach obtains better speech recognition performance.

Development of Inspect Algorithm for Pallets Using Vision System

  • Lee, Man-Hyung;Hong, Suh-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.101.6-101
    • /
    • 2001
  • This paper deals with inspect algorithm using visual system. One of the major problems that arise during polymer production is the estimation of the noise of the product(bad pallets). An erroneous output can cause a lot of losses (production and financial losses). Therefore new methods for real-time inspection of the noise are demanded. For this reason, we have presented a development of vision system algorithm for the defect inspection of PE pallets. First of all, in order to detect the edge of object, the differential filter is used. And we apply to the labeling algorithm for feature extraction. This algorithm is designed for the defect inspection of pallets ...

  • PDF

Integration of History-based Parametric CAD Model Translators Using Automation API (오토메이션 API를 사용한 설계 이력 기반 파라메트릭 CAD 모델 번역기의 통합)

  • Kim B.;Han S.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.3
    • /
    • pp.164-171
    • /
    • 2006
  • As collaborative design and configuration design are of increasing importance in product development, it becomes essential to exchange the feature and parametric CAD models among participants. A history-based parametric method has been proposed and implemented. But each translator which exchanges the feature and parametric information tends to be heavy because to implement duplicated functions such as the identification of the selected geometries, mapping between features which have different attributes. Furthermore. because the history-based parametric translator uses the procedural model as the neutral format, which is the XML macro file, the history-based parametric translators need a geometric modeling kernel to generate an internal explicit geometric model. To ease the problem, we implemented a shared integration platform, the TransCAD. The TransCAD separates translators from the XML macro files. The translators for various CAD systems need to communicate with only the TransCAD. To support the communication with the TransCAD, we exposed the functions of the TransCAD by using the Automation APIs, which is developed by Microsoft. The Automation APIs of the TransCAD consist of the part modeling functions, the data extraction functions, and the utility functions. Each translator uses these functions to translate a parametric CAD model from the sending CAD system into the XML format, or from the in format into the model of the receiving CAD system This paper introduces what the TransCAD is and how it works for the exchange of the feature and parametric models.

Fault Detection of Reciprocating Compressor for Small-Type Refrigerators Using ART-Kohonen Networks and Wavelet Analysis

  • Yang, Bo-Suk;Lee, Soo-Jong;Han, Tian
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2013-2024
    • /
    • 2006
  • This paper proposes a condition classification system using wavelet transform, feature evaluation and artificial neural networks to detect faulty products on the production line of reciprocating compressors for refrigerators. The stationary features of vibration signals are extracted from statistical cumulants of the discrete wavelet coefficients and root mean square values of band-pass frequencies. The neural networks are trained by the sample data, including healthy or faulty compressors. Based on training, the proposed system can be used on the automatic mass production line to classify product quality instead of people inspection. The validity of this system is demonstrated by the on-site test at LG Electronics, Inc. for reciprocating compressors. According to different products, this system after some modification may be useful to increase productivity in different types of production lines.

A Study of feature-Extraction from the Specifically Intoned Product Design (제품의 특성추출을 통한 디자인 적용 방법에 관한 연구)

  • Jo, Gwang-Su
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2007.05a
    • /
    • pp.139-142
    • /
    • 2007
  • 본 연구의 목적은 특정 목적을 가진 제품들의 특성들을 파악하여 디자인 개발시 이러한 특성들을 제품 컨셉 또는 디자인 형태에 응용하고자 함이다. 이를 위해 먼저 실험 대상을 설정하였고, 실험 대상을 선택한 후 실험 대상에 관한 기초 설문과 실험 대상 이미지 분석을 실시하였다. 이후 실험 대상의 디자인과 기능적 요소를 추출하여 코딩하였다. 그리고 실험 대상의 이미지분석 후 얻은 요소와 실험 대상의 요소의 관계를 증명하였으며, 실험 대상의 특성 추출을 위한 설문을 실시하였다. 이러한 실험 프로세스를 거쳐 특정한 제품에 특성들을 추출함으로써 디자인 개발 시 소비자 니즈의 분석이 가능하며, 제품을 이해하는 기초 자료로 사용이 가능하다. 또한 디자이너가 제품을 쉽게 이해하고 디자인 개발 시 컨셉 설정에 큰 기초가 된다. 본 연구의 MP3의 경우 MP3의 이미지 분석 결과 음악성, 확장성, 휴대성, 사용성, 신체 부담감, 인터페이스, 그리고 개성으로 나타났으며, 이들과 각각 연관된 특성들을 찾았다. 이로써 MP3를 디자인할 때 중요 특성들을 제시하였다. 이러한 기초 연구를 통해 보다 효과적인 소비자 니즈 파악이 가능하고, 디자인 기초 학문 발전을 가져올 것이다.

  • PDF

Soft Sensor Design Using Image Analysis and its Industrial Applications Part 1. Estimation and Monitoring of Product Appearance (화상분석을 이용한 소프트 센서의 설계와 산업응용사례 1. 외관 품질의 수치적 추정과 모니터링)

  • Liu, J. Jay
    • Korean Chemical Engineering Research
    • /
    • v.48 no.4
    • /
    • pp.475-482
    • /
    • 2010
  • In this work, soft sensor based on image anlaysis is proposed for quantitatively estimating the visual appearance of manufactured products and is applied to quality monitoring. The methodology consists of three steps; (1) textural feature extraction from product images using wavelet transform, (2) numerical estimation of the product appearance through projection of the textural features on subspace, and (3) use of latent variables of textural features (i.e., numerical estimates of product appearance). The focus of this approach is on the consistent and quantitative estimation of continuous variations in visual appearance rather than on classification into discrete classes. This approach is illustrated through the application to the estimation and monitoring of the appearance of engineered stone countertops.

Self-Supervised Long-Short Term Memory Network for Solving Complex Job Shop Scheduling Problem

  • Shao, Xiaorui;Kim, Chang Soo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.8
    • /
    • pp.2993-3010
    • /
    • 2021
  • The job shop scheduling problem (JSSP) plays a critical role in smart manufacturing, an effective JSSP scheduler could save time cost and increase productivity. Conventional methods are very time-consumption and cannot deal with complicated JSSP instances as it uses one optimal algorithm to solve JSSP. This paper proposes an effective scheduler based on deep learning technology named self-supervised long-short term memory (SS-LSTM) to handle complex JSSP accurately. First, using the optimal method to generate sufficient training samples in small-scale JSSP. SS-LSTM is then applied to extract rich feature representations from generated training samples and decide the next action. In the proposed SS-LSTM, two channels are employed to reflect the full production statues. Specifically, the detailed-level channel records 18 detailed product information while the system-level channel reflects the type of whole system states identified by the k-means algorithm. Moreover, adopting a self-supervised mechanism with LSTM autoencoder to keep high feature extraction capacity simultaneously ensuring the reliable feature representative ability. The authors implemented, trained, and compared the proposed method with the other leading learning-based methods on some complicated JSSP instances. The experimental results have confirmed the effectiveness and priority of the proposed method for solving complex JSSP instances in terms of make-span.

A Study on Design Parameters for Ready-made Ear Shell of Hearing Aids (보청기용 범용 이어쉘을 위한 설계 파라미터에 관한 연구)

  • Urtnasan, Erdenebayar;Jeon, Yu-Yong;Park, Gyu-Seok;Song, Young-Rok;Lee, Sang-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.5
    • /
    • pp.1055-1061
    • /
    • 2011
  • In this study, main parameters: aperture, first bend and second bend which express a structure of ear canal are extracted in order to modeling and manufacture the ready-made ear shells of hearing aids. The proposed parameter extraction method consists of 2 important algorithms, aperture detection and feature detection. In the aperture detection algorithm, aperture of 3-D scanned virtual ear impression and parameters relating to ear shell of hearing aid are determined. The feature detection algorithm detects first bend, second bend, and related parameters. Through these two algorithms, parameters for aperture, first bend, and second bend are extracted to model the ready-made ear shell of hearing aid. The values of these extracted parameters from 36 people's right ear impression are analyzed and measured statistically. As a result of the analysis, it has been found that it is possible to classify ready-made ear shell parameters by age and size. The ready-made ear shell parameters are classified 3-size for 20 years old and 2-size for 60 years olde. Using 3D rhino program, virtual ready-made ear shell is reconstructed by parameters of every type, and simulated to model it. A final product was produced by transferring simulation result with rapid prototyping system. The modeled ready-made ear shell is evaluated with the objective and subjective method. Objective method is the comparison volume ratio and overlapped volume ratio of ear impression from randomly chosen 18 people and ready-made ear shell. And subjective method is that the final product of ready-made ear shell is used by users and the satisfaction number drawn from well fitting and comfortable testing was evaluated. In the result of the evaluation, it has been found that volume ration is 70%, big and middle size ready-made ear shell products are possible, and the satisfaction number is high.

An Implementation of Pattern Recognition Algorithm for Fast Paper Currency Counting (고속 지폐 계수를 위한 패턴 인식 알고리즘 구현)

  • Kim, Seon-Gu;Kang, Byeong-Gwon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.7
    • /
    • pp.459-466
    • /
    • 2014
  • In this paper, we suggest an efficient image processing method for fast paper currency counting with pattern recognition. The patterns are consisted of feature data in each note object extracted from full reflection image of notes and a general contact image sensor(CIS) is used to aggregate the feature images. The proposed pattern recognition algorithm can endure image variation when the paper currency is scanned because it is not sensitive to changes of image resulting in successful note recognition. We tested 100 notes per denomination and currency of several countries including Korea, U.S., China, EU, Britain and Turkey. To ensure the reliability of the result, we tested a total of 10 times per each direction of notes. We can conclude that this algorithm will be applicable to commercial product because of its successful recognition rates. The 100% recognition rates are obtained in almost cases with exceptional case of 99.9% in Euro and 99.8% in Turkish Lira.