• Title/Summary/Keyword: Product/Process life cycle management

Search Result 101, Processing Time 0.027 seconds

ICT-based Waste Plastic Management Life Cycle Technology (ICT기반 폐플라스틱 관리 전주기 기술 동향)

  • Moon, Y.B.;Jeong, H.;Heo, T.W.
    • Electronics and Telecommunications Trends
    • /
    • v.37 no.4
    • /
    • pp.28-35
    • /
    • 2022
  • To solve the challenge of waste plastics, this study investigated the related technologies and company trends along the plastic life cycle, and primarily describes ICT technologies to improve efficiency in the process of sorting and sorting waste plastics. Waste plastic discharge caused by the explosive increase in parcel traffic because of COVID-19 is also growing exponentially. Hence, waste treatment is emerging as a social challenge. Most of the domestic waste classification depends on the manual process according to the waste pollution level. The plastic material classification approach using the spectroscopy approach reveals a high error in the contaminated waste plastic classification, but if the Artificial Intelligence-based image classification technology is employed together, the classification precision can be enhanced because of the type of waste plastic product and the contaminated part can be differentiated.

The Development of an Product Cost Estimation System at the Product Design Stage (제품 설계 단계에서의 제품 원가 추정 시스템 개발)

  • 한관희;박찬우;이규봉;황태일;김강용
    • Korean Journal of Computational Design and Engineering
    • /
    • v.8 no.2
    • /
    • pp.101-108
    • /
    • 2003
  • Presented in this paper is the development of an product cost estimation system at the product design stage. The efficient cost estimation function at the design stage is essential for the cost reduction activities through the entire product life cycle. For this purpose, it is necessary to establish a systematic working procedure, and to develop information system for managing a great deal of production and product-related data required for the cost estimation. The developed system has the capability of estimating a cost of assembly type products as well as unit-item type products. As proposed system is based on the variant approach, it can be used easily at an early design stage without the need for detail design information. Also, this system is integrated with legacy PDM (Product Data Management) and ERP (Enterprise Resource Planning) system for fast. accurate and easy product cost estimation. The estimated cost includes material cost, overhead cost as well as labor cost.

Ontology-Based Multi-level Knowledge Framework for a Knowledge Management System for Discrete-Product Development

  • Lee, Jae-Hyun;Suh, Hyo-Won
    • International Journal of CAD/CAM
    • /
    • v.5 no.1
    • /
    • pp.99-109
    • /
    • 2005
  • This paper introduces an approach to an ontology-based multi-level knowledge framework for a knowledge management system for discrete-product development. Participants in a product life cycle want to share comprehensive product knowledge without any ambiguity and heterogeneity. However, previous knowledge management approaches are limited in providing those aspects: therefore, we suggest an ontology-based multi-level knowledge framework (OBMKF). The bottom level, the axiom, specifies the semantics of concepts and relations of knowledge so ambiguity can be alleviated. The middle level is a product development knowledge map; it defines the concepts and the relations of the product domain knowledge and guides the engineer to process their engineering decisions. The middle level is then classified further into more detailed levels, such as generic product level, specific product level, product version level, and manufactured item level, according to the various viewpoints. The top level is specialized knowledge for a specific domain that gives the solution of a specific task or problem. It is classified into three knowledge types: expert knowledge, engineering function knowledge, and data-analysis-based knowledge. This proposed framework is based on ontology to accommodate a comprehensive range of knowledge and is represented with first-order logic to maintain a uniform representation.

Economical selection of optimum pressurized hollow fiber membrane modules in water purification system using RbLCC

  • Lee, Chul-sung;Nam, Young-wook;Kim, Doo-il
    • Membrane and Water Treatment
    • /
    • v.8 no.2
    • /
    • pp.137-147
    • /
    • 2017
  • A water treatment utility in South Korea operates a large system of pressurized hollow fiber membrane (PHFM) modules. The optimal selection of membrane module for the full scale plant was critical issue and carried out using Risk-based Life Cycle Cost (RbLCC) analysis based on the historical data of operation and maintenance. The RbLCC analysis was used in the process of decision-making for replacing aged modules. The initial purchasing cost and the value at risk during operation were considered together. The failure of modules occurs stochastically depending on the physical deterioration with usage over time. The life span of module was used as a factor for the failure of Poisson's probability model, which was used to obtain the probability of failure during the operation. The RbLCC was calculated by combining the initial cost and the value at risk without its warranty term. Additionally, the properties of membrane were considered to select the optimum product. Results showed that the module's life span in the system was ten years (120 month) with safety factor. The optimum product was selected from six candidates membrane for a full scale water treatment facility. This method could be used to make the optimum and rational decision for the operation of membrane water purification facility.

A Study on Determining Single-Center Scheduling for LTV(LifeTime Value) Using Heuristic Method (휴리스틱 방법을 활용한 고객 생애 가치에 대한 단일 업체 일정계획 수립에 관한 연구)

  • 양광모;강경식
    • Journal of the Korea Safety Management & Science
    • /
    • v.5 no.1
    • /
    • pp.83-92
    • /
    • 2003
  • Scheduling plays an important role in shop floor planning. A scheduling shows the planned time when processing of a specific job will start on each machine that the job requires. It also indicates when the job will be completed on every process. Thus, it is a timetable for both jobs and machines. There is only one server available and arriving work require services from this server. Job are processed by the machine one at a time. The most common objective is to sequence jobs on the severs so as to minimize the penalty for being late, commonly called tardiness penalty. Based on other objectives, many criteria may serve as s basis for developing job schedules. The process also comprises all strategic planning, capital investments, management decisions, and tasks necessary to create a new product. manufacturing processes must be created so that the product can be produced in the product facility. Purchasing new equipment and training workers may be required if new technology is to be used. Tools, fixtures, and the sequence of steps in the manufacturing processes must all be developed to allow rapid, high-quality, cost effective production. Also, it may be needed to be rearrange the production facility to adapt to the new manufacturing processes. Therefore, this study tries to proposed that Scheduling by customer needs group for minimizing the problem and reducing inventory, product development time, cycle time, and order lead time.

Impact on Requirement Elicitation Process when Transforming Software from Product Model to a Service Model

  • Sameen Fatima;Amna Anwer;Adil Tareen
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.199-203
    • /
    • 2023
  • Influential trend that widely reflected the software engineering industry is service oriented architecture. Vendors are migrating towards cloud environment to benefit their organization. Companies usually offer products and services with a goal to solve problems at customer end. Because customers are more interested in solution of their problem rather than focusing on products or services. In software industry the approach in which customers' problems are solved by providing services is known as software as a service. However, software development life cycle encounters enormous changes when migrating software from product model to service model. Enough research has been done on the overall development process but a limited work has been done on the factors that influence requirements elicitation process. This paper focuses on those changes that influence requirement elicitation process and proposes a systematic methodology for transformation of software from product to service model in a successful manner. The paper then elaborates the benefits that inherently come along with elicitation process in cloud environment. The paper also describes the problems during transformation. The paper concludes that requirement engineering process turn out to be more profitable after transformation of traditional software from product to service model.

An Empirical Study of Implementation and Application of Mold Life Cycle Management Information System In the Cloud Computing Environment (클라우드 컴퓨팅 환경에서 금형 수명주기관리 정보시스템 구축 및 적용의 실증적 연구)

  • Koh, Joon-Cheol;Nam, Seung-Done;Kim, Kyung-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.4
    • /
    • pp.331-341
    • /
    • 2014
  • Internet of Thing(IoT), which is recently talked about with the development of information and communication technology, provides big data to all nodes such as companies and homes, means of transportation etc. by connecting all things with all people through the integrated global network and connecting all actual aspects of economic and social life with Internet of Thing through sensor and software. Defining Internet of Thing, it plays the role of a connector of providing various information required for the decision-making of companies in the cloud computing environment for the Insight usage by collecting and storing Raw Data of the production site through the sensor network and extracting big data in which data is accumulated and Insight through this. In addition, as the industry showing the largest linkage with other root industries among root industries, the mold industry is the core technology for controlling the quality and performance of the final product and realizing the commercialization of new industry such as new growth power industry etc. Recently, awareness on the mold industry is changing from the structure of being labor-intensive, relying on the experience of production workers and repeating modification without the concept of cost to technology-intensive, digitization, high intellectualization due to technology combination according to IT convergence. This study, therefore, is to provide a golden opportunity to increase the direct and indirect expected effects in poor management activities of small businesses by actually implementing and managing the entire process of mold life cycle to information system from mold planning to mass production and preservation by building SME(small and medium-sized enterprises)-type mold life cycle management information system in the cloud computing environment and applying it to the production site.

The Solution Process of Successful Technology Commercialization - Focus on the Government Funded Enterprises - (성공적인 기술사업화를 위한 솔루션 프로세스 - 정부의 기술개발지원사업 참여기업을 대상으로 -)

  • Park, Jae-Sue;Park, Jung-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.7
    • /
    • pp.1522-1530
    • /
    • 2013
  • Technology commercialization or new product development (NPD) is the complete process of bringing a new product to market. This paper presents a framework for a technology firm to think about its commercialization strategy in an environment where the established firms have tight control over the government funded. Companies typically see new product development as the first stage in generating and commercializing new product within the overall strategic process of product life cycle management used to maintain or grow their market share. Market-oriented item will overcome the lack of capacity, and will ensure the success of SME.

Development of a Reliability Index using Design, Development and Production Information (설계, 개발 및 양산 정보를 활용한 신뢰성 지수 개발)

  • Kim, Sung Kyu;Park, Jung Won;Kim, Yong Soo
    • Journal of Korean Society for Quality Management
    • /
    • v.43 no.3
    • /
    • pp.373-382
    • /
    • 2015
  • Purpose: In this paper, we developed a reliability index (RI) to efficiently compare reliability of products based on the design, development and production information such as reliability tests, quality, product life-cycle management. RI also can be applied to reliability prediction of a novel product as well as comparison evaluation among existing products. Methods: For evaluating RI, we proposed evaluation process which is composed of five steps. Target modules are selected based on warranty data and correlation analysis. Scores of selected target modules are calculated by scoring function. Finally, weights of RI model are determined by optimization method. Results: This paper presented an empirical analysis based on failure data of mobile devices. In this case study, we demonstrated that there is a direct correlation between evaluated RI and field failure probability of each product. Conclusion: We proposed the index for comprehensive and effective assessment of product reliability level. From the procedure of this study, we expected to be applied for reliability estimation of novel products and deduction of field failure-related factors.

A Study on the Induction Procedure of PLM in the Multi-Item Product Business : Benchmarking Method (다품종 사업환경에서의 PLM 적용에 대한 연구 : Benchmarking 기법)

  • Ahn, Yong-Ho;Jeong, Woo-Cheol;Kim, Tae-Sung
    • Journal of Digital Convergence
    • /
    • v.10 no.5
    • /
    • pp.125-133
    • /
    • 2012
  • To make maximum benefit through the R&D investment, various methods is presented to support cooperating company in managing product information which reaches to conceptual design, detail design, production and a service from planning phase of production. Recently, the induction of PLM (Product Lifecycle Management) is being accelerated to design the enterprising system which is various from the idea phase for a product plan to the elimination through the life cycle of the product by the major companies. This study is focused on the research and development of the major companies which is producing products like sets, parts and equipment. This study proposes the process of product strategy, goods planning, development, information and the renovation of decision-making system.