• Title/Summary/Keyword: Processor Monitor

Search Result 94, Processing Time 0.027 seconds

Power system protection IED design using an embedded processor (임베디드 프로세서를 이용한 계통 보호 IED 설계)

  • Yoon, Ki-Don;Son, Young-Ik;Kim, Kab-Il
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.711-713
    • /
    • 2004
  • In the past time, the protection relay did only a protection function. Currently, its upgraded device i.e. IED(Intelligent Electric Device) has been designed to protect, control, and monitor the whole power system automatically. Also the device is desired to successfully measure important elements of the power system. This paper considers design method of a digital protection IED with a function of measuring various elements and a communication function. The protection IED is composed of the specific function modules that are signal process module, communication module, input/output module and main control module. A signal process module use a DSP processor for analysis of input signal. Main control module use a embedded processor, Xscale, that has an ARM Core. The communication protocol uses IEC61850 protocol that becomes standard in the future. The protection IED is able to process mass information with high-performance processor. As each function module is designed individually, the reliability of the device can be enhanced.

  • PDF

A 95% accurate EEG-connectome Processor for a Mental Health Monitoring System

  • Kim, Hyunki;Song, Kiseok;Roh, Taehwan;Yoo, Hoi-Jun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.4
    • /
    • pp.436-442
    • /
    • 2016
  • An electroencephalogram (EEG)-connectome processor to monitor and diagnose mental health is proposed. From 19-channel EEG signals, the proposed processor determines whether the mental state is healthy or unhealthy by extracting significant features from EEG signals and classifying them. Connectome approach is adopted for the best diagnosis accuracy, and synchronization likelihood (SL) is chosen as the connectome feature. Before computing SL, reconstruction optimizer (ReOpt) block compensates some parameters, resulting in improved accuracy. During SL calculation, a sparse matrix inscription (SMI) scheme is proposed to reduce the memory size to 1/24. From the calculated SL information, a small world feature extractor (SWFE) reduces the memory size to 1/29. Finally, using SLs or small word features, radial basis function (RBF) kernel-based support vector machine (SVM) diagnoses user's mental health condition. For RBF kernels, look-up-tables (LUTs) are used to replace the floating-point operations, decreasing the required operation by 54%. Consequently, The EEG-connectome processor improves the diagnosis accuracy from 89% to 95% in Alzheimer's disease case. The proposed processor occupies $3.8mm^2$ and consumes 1.71 mW with $0.18{\mu}m$ CMOS technology.

Multicore Flow Processor with Wire-Speed Flow Admission Control

  • Doo, Kyeong-Hwan;Yoon, Bin-Yeong;Lee, Bhum-Cheol;Lee, Soon-Seok;Han, Man Soo;Kim, Whan-Woo
    • ETRI Journal
    • /
    • v.34 no.6
    • /
    • pp.827-837
    • /
    • 2012
  • We propose a flow admission control (FAC) for setting up a wire-speed connection for new flows based on their negotiated bandwidth. It also terminates a flow that does not have a packet transmitted within a certain period determined by the users. The FAC can be used to provide a reliable transmission of user datagram and transmission control protocol applications. If the period of flows can be set to a short time period, we can monitor active flows that carry a packet over networks during the flow period. Such powerful flow management can also be applied to security systems to detect a denial-of-service attack. We implement a network processor called a flow management network processor (FMNP), which is the second generation of the device that supports FAC. It has forty reduced instruction set computer core processors optimized for packet processing. It is fabricated in 65-nm CMOS technology and has a 40-Gbps process performance. We prove that a flow router equipped with an FMNP is better than legacy systems in terms of throughput and packet loss.

Functional-Level Design and Simulation of a Graphics Processor (그래픽스 프로세서의 기능적 설계 및 시뮬레이션)

  • Bae, Seong-Ok;Lee, Hee-Choul;Kyung, Chong-Min
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.10
    • /
    • pp.1252-1262
    • /
    • 1988
  • This paper describes a functional-level design and simulation of Graphics Processor(GP) which can be used in various graphics systems. GP is divided into two parts: One is CPU, and the other is the interface to I/O peripherals. In order to achieve fast execution of graphics instructions, the CPU has special ALU, barrel shifter and window comparator and a FIFO for instruction prefetch. I/O part controls the DRAM and VRAM which constitute the GP's local memory, generates the signals to drive monitor, and communicates with the host processor. The functional simulation of CPU was done on Daisy workstation while the I/O part was designed using GENESIL, a silicon compiler.

  • PDF

A study on the implementation of scalable image capture processor using DRAM (DRAM을 사용한 가변 사이즈 영상 저장/재생 시스템 구현에 관한 연구)

  • 이호준;이주석;박노경;차균현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.6
    • /
    • pp.1185-1194
    • /
    • 1997
  • It is necessary to control the frame memory to capture, edit and display images. This paper presents the free-scale image capture processor size of which is user-defined, compared to the conventional image capture processor size of which is fixed 1/2, 1/4 and full size. User-defined scale data is fed into this system, which generates the gating pulses and gates the inputted image data. This system also controls the 4M DRAM instead of frame meamory. And stored gated image data are displayed on the TV monitor. We designed the scalable image capture parts and DRAM controller with ACTEL FPGAs, simulated the circuits with Viewlogic and fusing ACTEL A1020B chips. We confirmed the whole operation with beadboard which composed of "Philips TV Chipset" and designed FPGA chips.PGA chips.

  • PDF

Real Time FECG Monitoring System Using Digital Signal Process (디지탈 신호처리에 의한 실시간 태아 심전도 감시 시스템에 관한 연구 I)

  • 김남현;유선국;이건기;윤대희;김원기;박상희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.722-724
    • /
    • 1988
  • In this study, 8 ch. FECG signal storage system with general cassette recorder and amplifier is developed, and simulated LMS algorithm. In future we construct real time FECG monitor system that is used digital signal processor.

  • PDF

A Study of NMEA 2000 Protocol Application for Ship Electrical Power Converter Monitoring System (NMEA 2000 프로토콜을 적용한 선박 전력 컨버터 모니터링 시스템에 관한 연구)

  • Hong, Ji-Tae;Park, Dong-Hyun;Yu, Yung-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.288-294
    • /
    • 2011
  • In this paper, the FPGA-based SoC board (Xilinx Virtex-4 ML401 EVM) is adopted to control electrical power inverter system. For marine application, its performance is shown on PC-based system for monitoring electrical characteristics of a power inverter using by the NMEA 2000 protocol. This power inverter system is achieved in Real-Time monitoring and control by dual micro-processor operation on embedded FPGA-based SoC board. One micro processor is for control (Control processor) electrical power inverter using by PWM signal. And the other microprocessor (Communication processor) is for communication with PC-based monitoring system. The two-processor is communicating each other using by dual-port ram (DPRAM). PC-based system user can control and monitor information of the electrical power inverter via NMEA 2000 based communication processor. Control and monitoring information includes the inverter status and configuration. SoC board converts this information to Parameter Group Numbers (PGNs) in the NMEA 2000 protocol. This system can be applied to marine power electronics for distributed power generation, transmission or regulation systems on the ship.

A Real-Time Monitor for ARM Processors (ARM 프로세서를 위한 실시간 모니터)

  • 이은향;장원순;김형환;은성배
    • Proceedings of the IEEK Conference
    • /
    • 2000.06c
    • /
    • pp.67-70
    • /
    • 2000
  • In a distributed real-time system(DRTS), testing and debugging are difficult and critical procedures since they implies several problems like probe effects, nondeterminism, and complex communication patterns. In this paper, we describe the design and implementation of a real-time monitor for ARM processors which are frequently used for embedded applications. The focus of design is to help users debug real-time programs while minimizing the probe effect. Our monitor provides cross debugging features like down-loading from host, break-point based debugging features, and watch-point debugging features for real-time applications. We developed the debugger for ARM processor and debugger has been used for kernel program.

  • PDF

An Implementation of Remote Monitoring and Control System using CMOS Image sensor (CMOS 이미지 센서를 이용한 원격지 화상 감시 및 제어 시스템 구현)

  • Choi, Jae-Woo;Ro, Bang-Hyun;Lee, Chang-Keun;Hwang, Hee-Young
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.653-656
    • /
    • 2003
  • We have designed embedded web sewer system and ported Linux operating system version 2.4.5 at our system. And then We implemented to control and monitor widely separated hardware and implemented to monitor widely separated image using CMOS image sensor HV7131B. Web server is the Boa web server with General Public License. We designed for this system using of Intel's SA1110 ARM core base processor and connecting input and output device at GPIO port of SA1110. Device driver of General purpose I/O for Embedded Linux OS is designed. And then the application program controlling driver is implemented to use of common gate interface C language. User is available to control and monitor at client PC. This method have benefit to reduce the Expenditure of hardware design and development time against PC base system and have various and capacious application against firmware base system.

  • PDF

Exploring Branch Target Buffer Architecture on Intel Processors with Performance Monitor Counter (Performance Monitor Counter를 이용한 Intel Processor의 Branch Target Buffer 구조 탐구)

  • Jeong, Juhye;Kim, Han-Yee;Suh, Taeweon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.10a
    • /
    • pp.24-27
    • /
    • 2019
  • Meltdown, Spectre 등 하드웨어의 취약점을 이용하는 side-channel 공격이 주목을 받으면서 주요 microarchitecture 구조에 대한 철저한 이해의 필요성이 커지고 있다. 현대 마이크로프로세서에서 branch prediction이 갖는 중요성에도 불구하고 세부적인 사항은 거의 알려지지 않았으며 잠재적 공격에 대비하기 위해서는 반드시 현재 드러난 정보 이상의 detail을 탐구하기 위한 시도가 필요하다. 본 연구에서는 Performance Monitor Counter를 이용해 branch 명령어를 포함한 프로그램이 실행되는 동안 Branch Prediction Unit에 의한 misprediction 이벤트가 발생하는 횟수를 체크하여 인텔 하스웰, 스카이레이크에서 사용되는 branch target buffer의 구조를 파악하기 위한 실험을 수행하였다. 연구를 통해 해당 프로세서의 BTB의 size, number of way를 추정할 수 있었다.