Youtube는 낮은 진입장벽과 영상물 규제 기준의 모호함으로 인하여 검증되지 않은 사실을 기반으로 한 가짜뉴스, 편파적 콘텐츠 등이 사실적으로 나타난다. 따라서 본 연구에서는 언론과 Youtube가 개인의 행동에 미치는 영향과 이들의 관계성을 분석하고자 한다. selenium, beautiful soup, Twitter API로 Youtube와 Twitter의 데이터를 무작위로 가져와 가장 자주 언급되는 키워드 31개를 분류한다. 분류된 31개의 키워드를 기반으로 Youtube, Twitter, 네이버 뉴스에서 데이터를 수집 후, NLTK(Natural Language Toolkit)의 Vader 모델로 긍정, 부정, 중립감정을 분류 및 수치화하여 분석 데이터로 사용했다. 데이터들의 상관성을 분석한 결과, 뉴스의 부정수치가 높아질수록 Youtube에서는 긍정적인 콘텐츠가 많아지는 것으로 분석되었다. 본 연구결과로, Youtube는 2차로 가공하여 전달되는 특성으로 인해 뉴스에서 나타나는 감정 지수와 일치하지는 않는다. 즉, 가공된 Youtube 콘텐츠는 소통의 창구인 Twitter의 긍정, 부정수치에도 직관적으로 영향을 미치게 된다. 본 연구결과는 사람들의 흥미와 본능을 자극하여 시선을 끄는 황색언론의 등장으로 정보의 정확한 판단이 어려워진 현 상황에서, 자극적이고 부정적인 영상으로 사회에 악영향을 끼치는 것으로 인식되어있는 Youtube가 도리어 개인의 식별력을 보조하는 역할을 하는 것으로 분석되었다.
본 연구는 「도시재생 활성화 및 지원에 관한 특별법」에 따라 2017년부터 시작된 도시재생 뉴딜사업(이하 '뉴딜사업')의 종류가 다양해짐에 따라 데이터 기반의 정확한 쇠퇴진단과 사업유형 예측이 중요하다고 판단되어, 전국 읍면동을 대상으로 가장 적합한 뉴딜사업 유형을 판별할 수 있는 적용 모형 개발을 위한 연구를 수행하였다. 적용 모형 개발을 위한 데이터는 통계지리정보서비스(SGIS)와 도시재생정보체계의 '도시재생 종합정보 개방체계'를 통해 수집하고 데이터 전처리를 거쳐 분석 모델을 위한 데이터를 구축하였다. 적용 모형은 다항 회귀분석과 다항 로지스틱 회귀분석을 통해 4가지 모형을 도출하였다. 4가지 모형의 적용 가능성과 유효성 검증을 위해 서울특별시를 대상으로 각 모형별로 기존에 선정된 뉴딜사업지에 공간분포도를 비교 분석한 결과 DI-54 모형이 가장 높은 일치율을 확인할 수 있었다. 또한 DI-54 모형을 전국 954개 도시 쇠퇴지역에 적용해본 결과에서도 적합 도시재생 사업유형 판별에 활용 가능성을 확인할 수 있었다.
본 연구는 Kano모델을 이용하여 유소년 스포츠클럽의 서비스품질을 분류함에 따라 각 서비스품질의 특성과 이용고객들이 원하는 요구사항을 구체적으로 분석하는 데 목적이 있다. 이와 같은 목적을 달성하기 위해 서울과 경기지역의 유소년 스포츠클럽 10곳의 257명을 대상으로 설문조사를 실시하였으며, 자료 처리는 Microsoft Office Excel 2016 and SPSS 22.0을 사용하여 빈도분석, 요인분석, 신뢰도분석, Kano모델 품질분류, Timko의 고객만족계수산출, 잠재적 고객만족 개선지수(PCSI Index)를 산출하고 분석하였다. 이에 따른 본 연구의 결과는 다음과 같다. 첫째, 유소년 스포츠클럽 서비스품질요인들에 대한 각 항목들을 Kano모델을 사용하여 이원적 품질이론속성 방법으로 분류한 결과 유소년 스포츠클럽 서비스품질요인 22개 항목 모두에서 일원적품질요소로 나타났다. 둘째, 고객만족계수(CS-Coefficient) 산출결과 고객만족계수에서는 '강사의 친절한 응대'(0.81), '강사의 태도'(0.80), '체계적인 강습 프로그램 진행'(0.76), '프로그램의 다양성'(0.76) 순으로 나타났으며, 불만족계수는 '청결하고 쾌적한 시설'(-0.79), '강사의 태도'(-0.76), '강사의 친절한 응대'(-0.76), '주차시설의 편리성'(-0.73), '업무처리의 신속성'(-0.73) 순으로 나타났다. 셋째, 잠재적 고객만족 개선지수(PCSI Index)는 '강사의 태도', '강사의 친절한 응대', '청결하고 쾌적한 시설', '체계적인 강습 프로그램 진행' 순으로 순위가 나타났다.
Recently Artificial Intelligence(AI) has been developed and used in various fields. Especially AI recognition technology can perceive and distinguish images so it should plays a significant role in quality inspection process. For stability of autonomous driving technology, semiconductors inside automobiles must be protected from external electromagnetic wave(EM wave). As a shield film, a thin polymeric material with hole shaped micro-patterns created by a laser processing could be used for the protection. The shielding efficiency of the film can be increased by the hole structure with appropriate pitch and size. However, since the sensitivity of micro-machining for some parameters, the shape of every single hole can not be same, even it is possible to make defective patterns during process. And it is absolutely time consuming way to inspect all patterns by just using optical microscope. In this paper, we introduce a AI inspection system which is based on web site AI tool. And we evaluate the usefulness of AI model by calculate Area Under ROC curve(Receiver Operating Characteristics). The AI system can classify the micro-patterns into normal or abnormal ones displaying the text of the result on real-time images and save them as image files respectively. Furthermore, pressing the running button, the Hardware of robot arm with two Arduino motors move the film on the optical microscopy stage in order for raster scanning. So this AI system can inspect the entire micro-patterns of a film automatically. If our system could collect much more identified data, it is believed that this system should be a more precise and accurate process for the efficiency of the AI inspection. Also this one could be applied to image-based inspection process of other products.
최근 다언어모델(Cross-lingual language model)을 활용하여 한 번도 보지 못한 특정 언어의 하위 태스크를 수행하는 제로샷 교차언어 전이(Zero-shot cross-lingual transfer)에 대한 관심이 증가하고 있다. 본 논문은 기계번역 품질 예측(Quality Estimation, QE)을 학습하기 위한 데이터 구축적 측면에서의 한계점을 지적하고, 데이터를 구축하기 어려운 상황에서도 QE를 수행할 수 있도록 제로샷 교차언어 전이를 수행한다. QE에서 제로샷을 다룬 연구는 드물며, 본 논문에서는 교차언어모델을 활용하여 영어-독일어 QE 데이터에 대해 미세조정을 실시한 후 다른 언어쌍으로의 제로샷 전이를 진행했고 이 과정에서 다양한 다언어모델을 활용하여 비교 연구를 수행했다. 또한 다양한 자원 크기로 구성된 언어쌍에 대해 제로샷 실험을 진행하고 실험 결과에 대해 언어별 언어학적 특성 관점으로의 분석을 수행하였다. 실험결과 multilingual BART와 multillingual BERT에서 가장 높은 성능을 보였으며, 특정 언어쌍에 대해 QE 학습을 전혀 진행하지 않은 상황에서도 QE를 수행할 수 있도록 유도하였다.
최근 인공지능을 활용한 다양한 지능형 응용서비스 개발이 활발히 진행 중이다. 특히, 제조 산업 현장에서는 인공지능 기반 실시간 예측서비스 연구가 활발히 진행 중이며 이중 화재 및 악취를 감지·예측할 수 있는 인공지능 서비스에 대한 요구가 매우 높다. 하지만 기존 감지·예측시스템은 화재 및 악취 발생 예측이 아닌 발생 후 감지 서비스가 대부분이다. 이는 인공지능 기반 예측서비스 기술이 적용되어 있지 않기 때문이다. 또한, 화재 예측 및 악취 감지·예측서비스는 초저지연 특징을 가진 서비스이다. 따라서 초저지연 예측서비스를 제공하기 위해 엣지 컴퓨팅 기술이 인공지능 모델과 결합되어 클라우드에 비해 빠른 추론 결과를 현장에 빠르게 적용할 수 있도록 개발 중이다. 따라서 본 논문에서는 제조 산업 현장에서 가장 많이 요구되는 화재 예측 및 악취 감지·예측에 사용할 수 있는 LSTM 알고리즘 기반 학습모델을 제안한다. 또한, 제안하는 학습모델은 엣지 다바이스에 구현이 가능하도록 설계하였으며 사물인터넷 단말로부터 실시간 센서데이터를 수신하고 이 데이터를 추론 모델에 적용하여 화재 및 악취 상태를 실시간으로 예측할 수 있도록 제안한다. 제안된 모델은 3가지 성능 지표를 통해 학습모델의 예측 정확도를 평가하였으며 평가 결과는 평균 90% 이상 성능을 보였다.
대용량의 코퍼스로 학습한 사전학습 언어모델이 다양한 자연어처리 태스크에서 성능 향상에 도움을 주는 것은 많은 연구를 통해 증명되었다. 하지만 자원이 부족한 언어 환경에서 사전학습 언어모델 학습을 위한 대용량의 코퍼스를 구축하는데는 한계가 있다. 이러한 한계를 극복할 수 있는 Cross-lingual Post-Training (XPT) 방법론을 사용하여 비교적 자원이 부족한 한국어에서 해당 방법론의 효율성을 분석한다. XPT 방법론은 자원이 풍부한 영어의 사전학습 언어모델의 파라미터를 필요에 따라 선택적으로 재활용하여 사용하며 두 언어 사이의 관계를 학습하기 위해 적응계층을 사용한다. 이를 통해 관계추출 태스크에서 적은 양의 목표 언어 데이터셋만으로도 원시언어의 사전학습 모델보다 우수한 성능을 보이는 것을 확인한다. 더불어, 국내외 학계와 기업에서 공개한 한국어 사전학습 언어모델 및 한국어 multilingual 사전학습 모델에 대한 조사를 통해 각 모델의 특징을 분석한다
특수교는 중요한 대형 시설물로 장기적이고 체계적인 유지관리 전략을 필요로 한다. 특히, 시설물 부재별 및 위치별로 다양한 센서를 설치하고 계측 항목별 관리 기준치 설정과 같은 시설물의 안전 확보를 위해 여러 방안들이 제시되고 있다. 이 중 지속적으로 증가하는 특수교의 수와 여러 센서에서 수집되는 데이터를 효율적으로 관리하기 위한 전략적인 방안을 제시해야 할 필요가 있다. 본 연구에서는 특수교 계측 시스템에서 수집되는 광범위한 데이터를 효율적으로 분석하기 위한 목적으로 자동적으로 이상신호를 처리하고 통계 결과를 산출할 수 있는 분석 툴을 개발하고자 한다. 분석 툴 개발을 위해 우선 특수교에 설치된 주요 센서 종류 및 수량과 같은 기본적인 정보와 수집된 데이터에 대한 신호 특성을 분석하였다. 이후 험펠 필터 기법을 활용 신호의 이상 유무를 판별하고 필터링하여 통계 결과를 산출하였다. 마지막으로 개발된 분석 툴의 성능 검증을 위해 현재 공용 중인 사장교와 현수교 형식의 교량을 각 1개소씩 성능검증 대상 교량으로 선정하여 신호처리 및 자동 통계 분석 성능을 실시하였고, 기존의 통계 작업 결과와 유사한 결과를 산출 할 수 있었다.
차기 상태 천이 표상(Successor representation, SR) 기반 강화학습 알고리즘은 두뇌에서 발현되는 신경과학적 기전을 바탕으로 발전해온 강화학습 모델이다. 해마에서 형성되는 인지맵 기반의 환경 구조 정보를 활용하여, 변화하는 환경에서도 빠르고 유연하게 학습하고 의사결정 가능한 자연 지능 모사형 강화학습 방법으로, 불확실한 보상 구조 변화에 대해 빠르게 학습하고 적응하는 강인한 성능을 보이는 것으로 잘 알려져 있다. 본 논문에서는 표면적인 보상 구조가 변화하는 환경뿐만 아니라, 상태 천이 확률과 같은 환경 구조 내 잠재 변수가 보상 구조 변화를 유발하는 상황에서도 SR-기반 강화학습 알고리즘이 강인하게 반응하고 학습할 수 있는지 확인하고자 한다. 성능 확인을 위해, 상태 천이에 대한 불확실성과 이로 인한 보상 구조 변화가 동시에 나타나는 2단계 마르코프 의사결정 환경에서, 목적 기반 강화학습 알고리즘에 SR을 융합한 SR-다이나 강화학습 에이전트 시뮬레이션을 수행하였다. 더불어, SR의 특성을 보다 잘 관찰하기 위해 환경을 변화시키는 잠재 변수들을 순차적으로 제어하면서 기존의 환경과 비교하여 추가적인 실험을 실시하였다. 실험 결과, SR-다이나는 환경 내 상태 천이 확률 변화에 따른 보상 변화를 제한적으로 학습하는 행동을 보였다. 다만 기존 환경에서의 실험 결과와 비교했을 때, SR-다이나는 잠재 변수 변화로 인한 보상 구조 변화를 빠르게 학습하지는 못하는 것으로 확인 되었다. 본 결과를 통해 환경 구조가 빠르게 변화하는 환경에서도 강인하게 동작할 수 있는 SR-기반 강화학습 에이전트 설계를 기대한다.
Background: In northern Thailand, the longan flower is the principal nectar source for honey production. Microorganisms play a critical function in the agricultural ecology. The morphological characteristics of fungal species found in longan pollen were studied. Aspergillus spp. were found to be invertase-producing strains and were employed in the longan syrup production process. The purpose of this study was to evaluate the effects of invertase-added longan syrup on the adult honey bee population numbers that were fed by this syrup for 16 weeks. Results: Different fungal species were found in longan pollen samples. Aspergillus was the main genus, with three predominant sections: Nigri, Flavi, and Terrei. Other isolated species were Trichoderma spp., Rhizopus spp., Neurospora spp., Chaetomium spp., Fusarium spp. and Penicillium spp. However, Aspergillus spp. is the only fungal species that produces the enzyme invertase. The invertase-producing strains belonging to the Aspergillus section Nigri were found to be A. niger LP5 with an optimum activity at pH 6.0 and 60℃. When A. niger LP5 invertase was used for longan syrup processing, the highest levels of glucose (3.45%) and fructose (2.08%) were found in invertase added longan syrup (C), while fresh (A) and boiled longan syrup (B) had lower contents of both sugars. The sucrose content was detected in (A) at 4.25%, while (B) and (C) were at 4.02% and 3.08%, respectively. An appropriate amount of sugar to feed and maintain the honey bee population was considered. The data showed no statistically significant differences between the two selected forms of longan syrup compared to the sugar syrup examined by the adult honey bee population. Conclusions: The main species of isolated fungi from longan pollen were Aspergillus spp. The discovery of an invertase-producing strain of A. niger LP5 has enabled its application for enzyme utilization in the invert sugar preparation process. The adult worker bee populations fed by longan syrup from both boiled and invertase-added sources showed an increasing trend. Artificial syrup made from longan fruit to feed honey bees when natural food sources are limited can be applied.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.