• Title/Summary/Keyword: Processing Condition

Search Result 2,689, Processing Time 0.03 seconds

Prediction of High Temperature Plastic Deformation Variables on Al 6061 Alloy (Al 6061 합금의 고온 소성변형 조건의 예측)

  • 김성일;정태성;유연철;오수익
    • Transactions of Materials Processing
    • /
    • v.8 no.6
    • /
    • pp.576-582
    • /
    • 1999
  • The high temperature behavior of Al 6061 alloy was characterized by the hot torsion test in the temperature ranges of 400∼550℃ and the strain rate ranges of 0.05∼5/sec. To decide optimum deformation condition, three types of deformation maps were individually made from the critical strain (εc). deformation resistance(σp) and deformation efficiency (η). The critical strain(εc) for dynamic recrystallization (DRX) which was decided from the inflection point of strain hardening rate(θ) - effective stress (σ) curve was about 0.65 times of peak strain (εp). The relationship among deformation resistance (peak stress, σp), strain rate (ε), and temperature (T) could be expressed by ε=2.9×1013[sinh(0.0256σp]7.3exp (-216,000/RT). The deformation efficiency (η)which was calculated on the basis of the dynamic materials model (DMM) showed high values at the condition of 500∼550℃, 5/sec for 100% strain. The results from three deformation maps were compared with microstructures. The best condition of plastic deformation could be determined as 500℃ and 5/sec.

  • PDF

Adaptive LVQ Intelligent System for Perimeter Condition (주변 상황에 적응하는 LVQ 지능 시스템)

  • 엄기환
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.3
    • /
    • pp.627-638
    • /
    • 1999
  • In this paper, the system with an artificial intelligent that is able itself to adjust the perimeter condition of the plant is presented. The proposed intelligent system is composed of two learning vector quantization(LVQ) networks, which are used mostly in the field of the pattern recognition and signal processing. From the external condition of the plant, the first LVQ network recognizes the pattern of the sensed signal and the second LVQ network judges synthetically user's characteristics and performs learning. The controller controls the plant using the reference value, which is the output value of the synthetic judgement part. In order to verify the usefulness of the proposed method, we simulated the two LVQs are implemented for the artificial intelligent illuminator as well as being carried out computer simulations. We implemented the proposed artificial intelligent illuminator and perform the experiment.

  • PDF

Presumption for Mutual Relation of the End-Milling Condition on Surface Roughness of Al Alloy by Regression Analysis (회귀분석을 이용한 Al 합금의 표면거칠기에 미치는 엔드밀 가공조건의 상관관계 추정)

  • 이상재;배효준;박흥식;전태옥
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.5
    • /
    • pp.46-52
    • /
    • 2003
  • End-milling have been used widely in industrial system because it is effective to a material manufacturing with various shape. Recently the end-milling processing is needed the high-precise technique with good surface roughness and rapid time in precision machine part and electronic part. The optimum surface roughness has an effect on end-milling condition such as, cutting direction spindle speed, feed rate and depth of cut, etc. Therefore this study was carried out to presume for mutual relation of end-milling condition to get the optimum surface roughness by regression analysis. The results shown that coefficient of determination($\textrm{R}^2$) of regression equation has a fine reliability of 87.5% and regression equation of surface rough is made by regression analysis.

Selecting the Optimum Condition of Injection Molding Process by the Taguchi Method and Neural Network (다구찌 방법과 신경회로망을 이용한 사출성형 가공공정의 최적 가공조건 선정에 관한 연구)

  • 홍정의
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.25 no.2
    • /
    • pp.71-76
    • /
    • 2002
  • Defining the relationship between the quality of Injection molded parts and the process condition is very complicate because of lots of factors are involved and each factor has a non-linearity. With the development of CAE(Computer Aided Engineering) technology, the estimation of volumetric shrinkage of injection mold parts is possible by computer simulation in spite of restricted application. In this research, the Taguchi method md Neural Network are applied for finding optimal processing condition. The percent of volumetric shrinkage is compared on each case and shows neural network can be successfully applied.

Process optimization for the steam injection molding (스팀사출성형에 의한 공정의 최적화)

  • Moon, Yonng-dae
    • Design & Manufacturing
    • /
    • v.9 no.2
    • /
    • pp.10-15
    • /
    • 2015
  • The water has been the suitable for the cooling medium until now. But the water as cooling medium seem to have the limit for high speed injection. The steam plastic molding injection use the steam as the medium when raise the mold temperature. The weld line has been the major quality problems in a plastic injection parts to be difficult to be solved. These problems in injection-molded plastic parts are difficult to find the reason because these issues are usually in tradeoff realtions with each other. The purpose of this paper is to obtain the optimum injection moulding condition for improving the quality of plastic injection parts and to inquire the productivity improvement with the measured cycle time by steam plastic moluding injection. Based on these numerical results, the guidelines of mould design and injection processing condition were established. As a result, the improvement of quality and the reduction of cycle time was achieved.

  • PDF

Experiment of tong-neck Flange Cold Forging Process Using Plasticine (플라스티신을 이용한 롱넥 플랜지 냉간 단조 공정의 모사 실험)

  • 이호용;임중연;이상돈
    • Transactions of Materials Processing
    • /
    • v.10 no.1
    • /
    • pp.67-74
    • /
    • 2001
  • The cold forging process to produce a long-neck flange is investigated by using model material test. The two stage process with optimum design condition is examined using plasticine, which is suitable to model steel at room temperature. The similarity theory is employed to estimate the forging load of each sequence by strict application of similarity condition between steel(AISI 1015) and plasticine material The model test results are compared with the simulation results and shows good agreement. The proper forging process with least forming energy can be resulted in $25^{\circ}$ of extrusion semi-die angle.

  • PDF

Elastic-plastic Finite Element Analysis of Drawbead Forming for Evaluation of Equivalent Boundary Conditions in Sheet Metal Forming - Part II : Application to the front Door Panel Forming Process (박판 성형공정에서의 등가 경계조건 계산을 위한 드로우비드 성형의 탄소성 유한요소 해석 - Part II : 프런트 도어 판넬 성형공정에서의 적용)

  • Park, J.S.;Kim, S.H.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.11 no.6
    • /
    • pp.513-518
    • /
    • 2002
  • The equivalent boundary conditions have been applied to the front door panel forming process, in order to demonstrate its reliability and validity. The elongation in the bead forming process is applied to the binder wrap process as the equivalent displacement boundary condition and the restraining force in the drawing process is applied to stamping process as the equivalent force boundary condition. The result calculated with the equivalent boundary conditions shows closer coincidence with the experimental result than simulation with different boundary conditions. The numerical result fully demonstrates that drawbead forming simulation for calculation of equivalent boundary conditions is necessary and effective.

The Role of Processing Fluency in Product Innovativeness Judgment

  • Cho, Hyejeung
    • Asia Marketing Journal
    • /
    • v.15 no.3
    • /
    • pp.31-52
    • /
    • 2013
  • The metacognitive experience of the ease or difficulty with which new, external information can be processed, referred to as 'processing fluency,' has been shown to influence a wide range of human judgments including truth judgments, familiarity judgments, risk perception, evaluation, and preference (see Alter and Oppenheimer 2009 for a review). The current research explores the possibility of a consumer's product innovativeness judgment based on the difficulty of processing new information. In specific, this study examines if the inferential link between (dis)fluency-(un)familiarity can feed into the perception of innovativeness. This study also explores how a consumer's processing motivation can moderate the consumer's reliance on processing fluency in judgments and how the influence of fluency can vary depending on judgment task orders. In an experiment, participants rated a new product's innovativeness and then indicated their product attitude (or vice versa depending on the judgment task order condition) after reading a product review article that was printed in either an easy-to-read or a difficult-to-read font (for fluency manipulation). The findings show that low need for cognition individuals infer higher product innovativeness when processing product information is difficult rather than easy, consistent with the common assumption that 'new information is more difficult to process than familiar information.' The findings also suggest that once low fluency is attributed to innovativeness, it may no longer lead to a negative response to the product. High need for cognition individuals' judgments on product innovativeness are not affected by fluency. The findings also demonstrate a judgment task order effect on the use of fluency in judgments (e.g., Xu and Schwarz 2005). This study provides the first evidence that an individual's fluency experience can be used as a source of information in product innovativeness judgments especially under low processing motivation conditions. The findings can help marketers better understand the malleability of consumer judgments and perceptions of product characteristics (e.g., product innovativeness) by demonstrating an interesting interplay of processing fluency, processing motivation, and judgment task-related contextual factors.

  • PDF

Monochromatic Image Analysis of Elastohydrodynamic Lubrication Film Thickness by Fringe Intensity Computation

  • Jang, Siyoul
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1704-1713
    • /
    • 2003
  • Point contact film thickness in elastohydrodynamic lubrication (EHL) is analyzed by image processing method for the images from an optical interferometer with monochromatic incident light. Interference between the reflected lights both on half mirror Cr coating of glass disk and on super finished ball makes circular fringes depending on the contact conditions such as sliding velocity, applied load, viscosity-pressure characteristics and viscosity of lubricant under ambient pressure. In this situation the film thickness is regarded as the difference of optical paths between those reflected lights, which make dark and bright fringes with monochromatic incident light. The film thickness is computed by numbering the dark and bright fringe orders and the intensity (gray scale image) in each fringe regime is mapped to the corresponding film thickness. In this work, we developed a measuring technique for EHL film thickness by dividing the image patterns into two typical types under the condition of monochromatic incident light. During the image processing, the captured image is converted into digitally formatted data over the contact area without any loss of the image information of interferogram and it is also interpreted with consistency regardless of the observer's experimental experience. It is expected that the developed image processing method will provide a valuable basis to develop the image processing technique for color fringes, which is generally used for the measurement of relatively thin films in higher resolution.

Minimum Statistics-Based Noise Power Estimation for Parametric Image Restoration

  • Yoo, Yoonjong;Shin, Jeongho;Paik, Joonki
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.2
    • /
    • pp.41-51
    • /
    • 2014
  • This paper describes a method to estimate the noise power using the minimum statistics approach, which was originally proposed for audio processing. The proposed minimum statistics-based method separates a noisy image into multiple frequency bands using the three-level discrete wavelet transform. By assuming that the output of the high-pass filter contains both signal detail and noise, the proposed algorithm extracts the region of pure noise from the high frequency band using an appropriate threshold. The region of pure noise, which is free from the signal detail part and the DC component, is well suited for minimum statistics condition, where the noise power can be extracted easily. The proposed algorithm reduces the computational load significantly through the use of a simple processing architecture without iteration with an estimation accuracy greater than 90% for strong noise at 0 to 40dB SNR of the input image. Furthermore, the well restored image can be obtained using the estimated noise power information in parametric image restoration algorithms, such as the classical parametric Wiener or ForWaRD image restoration filters. The experimental results show that the proposed algorithm can estimate the noise power accurately, and is particularly suitable for fast, low-cost image restoration or enhancement applications.