• Title/Summary/Keyword: Processed water

검색결과 670건 처리시간 0.031초

상업어선의 어군탐지기를 이용한 남극크릴(Euphausia superba) 자원량 추정 (Estimating the Abundance of Antarctic Krill Euphausia superba Using a Commercial Trawl Vessel)

  • 최석관;한인우;안두해;정상덕;윤은아;이경훈
    • 한국수산과학회지
    • /
    • 제51권4호
    • /
    • pp.435-443
    • /
    • 2018
  • The Antarctic krill Euphausia superba is important commercially and ecologically as a basic component of the Antarctic Ocean ecosystem. To manage this resource, it is important to determine the distribution and standing of krill in the water layer. Acoustic methods can capture information about the entire water layer quickly. Acoustic surveys were conducted from March 3 to March 14, 2017, using the commercial fishing boat Sejong (7,765 tons). Acoustic systems with a frequency of 38 kHz and a 200 kHz commercial echo sounder (ES70, Simrad, Norway) were used and the acquired data were processed using post processing software. The density and standing of Antarctic krill were determined using the two-frequency difference method, using the characteristics of two frequencies. To compare the frequency difference of krill, the method using the frequency difference according to the krill length, recommended by the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) and the values extracted according to the krill length at survey stations where only krill were collected during the study period, were compared. The frequency difference ranges were 3.96-5.91 dB and -3.0~13.8 dB, respectively.

담금수의 수질이 열무 물김치의 비타민 C 함량에 미치는 영향 (Effect of the Water Quality on the Variation of Ascorbic Acid Content during Yulmoo Mul-kimchi Fermentation)

  • 김유진;오지영;이태녕;한영숙
    • 한국식품과학회지
    • /
    • 제30권1호
    • /
    • pp.175-183
    • /
    • 1998
  • 비타민 C 고함량의 물김치를 제조하기 위한 방법의 하나로 담금수의 종류를 달리하여 지하수, 1차증류수, 3차 증류수, 생수 및 수돗물의 금속이온(Ca, Mg, Fe, K, Na, Cu) 함량을 분석하였으며, 각각의 물로 열무 물김치를 제조하여 $15^{\circ}C$에서 발효 숙성시키면서 그 담금수가 김치의 숙성지표인 pH와 산도의 변화에 미치는 영향을 밝히고, 총 비타민 C함량, 텍스쳐 및 미생물 균수의 변화를 살펴봄과 동시에 관능검사를 실시한 결과는 다음과 같았다. 각 담금수의 금속이온 함량을 측정한 결과, 전반적으로 3차 증류수가 금속이온 함량이 가장 낮은 반면 수돗물은 금속이온 함량이 가장 높았고, 특히 Cu 이온이 검출되었으며, 지하수의 Ca함량은 다른 담금수에 비해 월등히 높았다. 각 담금수로 제조한 김치국물의 pH와 산도 및 미생물의 변화는 김치시료간에 큰 차이를 보이지 않았고, 열무 줄기로 측정한 텍스쳐는 시료간에 큰 차이를 보이지 않았으나 담금 3일까지 증가하였다가 그 이후 감소하는 경향을 보였다. 한편, 총 비타민 C 함량은 3차 증류수로 제조한 김치국물의 숙성 적기 총 비타민 C함량이 7.20 mg%로 최고 함량을 나타내었고, 그 다음이 지하수로 제조한 김치로 5.72 mg%를 나타내었으며, 수돗물로 제조한 김치의 총 비타민 C 함량은 3.37 mg%로 가장 낮아 3차 증류수로 제조한 김치의 50%에 불과했다. 또한, 기호도를 조사한 결과, 3차 증류수로 제조한 김치의 기호도가 가장 높았고 그 다음이 생수로 제조한 김치였으며, 지하수로 제조한 김치의 기호도가 가장 낮았다.

  • PDF

ANFIS를 이용한 상수도 1일 급수량 예측에 관한 연구 (A Study of Prediction of Daily Water Supply Usion ANFIS)

  • 이경훈;문병석;강일환
    • 한국수자원학회논문집
    • /
    • 제31권6호
    • /
    • pp.821-832
    • /
    • 1998
  • 본 논문에서는 상수도시설을 효율적으로 운영하는 데 필요한 1일 급수량 수요를 예측하는 방식에 대하여 인공지능(Artificial Inteligence)이라 불리는 퍼지 뉴론(fuzzy neuron)을 이용하여 연구하였다. 퍼지뉴론이란 퍼지정보(fuzzy information)를 입력으로 받아들이고 처리하는 퍼지 신경망을 일컫는 말이다. 본 연구에서는 소속함수와 퍼지규칙을 신경망으로 학습하는 기능인 적응식 학습방법을 통하여 1일 급수량을 예측하였으며 연구대상 지역으로는 광주광역시를 선정하였다. 또한 1일 급수량 예측에 있어서 필요한 변수 선택을 위해 입력자료를 상관분석, 자기상관, 부분자기상관, 교차상관 분석 등을 하였으며 동정된 입력변수는 급수량, 평균기온, 급수인구이다. 먼저 급수량, 평균기온, 급수인구로 모델을 구성하였고, 한편으론 기상청의 기후예보자료를 신뢰할 수 없는 경우에는 급수량을 예측할 수 있도록 급수량 자료만으로 모델을 구성하여 그 유효성을 검증하였다. 제안된 모형식은 사고 등의 인위적인 조작(단수 등)이 가해지는 시기를 포함하고도 실측치와 모형의 예측치와의 오차율이 최대 18.46%, 평균2.36% 이내로 나타나, 모형의 결과는 상수도 시설의 운용 및 급·배수관망의 실시간 제어에 많은 도움을 주리라 생각된다.

  • PDF

High Quality Nano Structured Single Gas Barrier Layer by Neutral Beam Assisted Sputtering (NBAS) Process

  • Jang, Yun-Sung;Lee, You-Jong;Hong, Mun-Pyo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.251-252
    • /
    • 2012
  • Recently, the growing interest in organic microelectronic devices including OLEDs has led to an increasing amount of research into their many potential applications in the area of flexible electronic devices based on plastic substrates. However, these organic devices require a gas barrier coating to prevent the permeation of water and oxygen because organic materials are highly susceptible to water and oxygen. In particular, high efficiency OLEDs require an extremely low Water Vapor Transition Rate (WVTR) of $1{\times}10^{-6}g/m^2$/day. The Key factor in high quality inorganic gas barrier formation for achieving the very low WVTR required ($1{\times}10^{-6}g/m^2$/day) is the suppression of defect sites and gas diffusion pathways between grain boundaries. In this study, we developed an $Al_2O_3$ nano-crystal structure single gas barrier layer using a Neutral Beam Assisted Sputtering (NBAS) process. The NBAS system is based on the conventional RF magnetron sputtering and neutral beam source. The neutral beam source consists of an electron cyclotron Resonance (ECR) plasma source and metal reflector. The Ar+ ions in the ECR plasma are accelerated in the plasma sheath between the plasma and reflector, which are then neutralized by Auger neutralization. The neutral beam energies were possible to estimate indirectly through previous experiments and binary collision model. The accelerating potential is the sum of the plasma potential and reflector bias. In previous experiments, while adjusting the reflector bias, changes in the plasma density and the plasma potential were not observed. The neutral beam energy is controlled by the metal reflector bias. The NBAS process can continuously change crystalline structures from an amorphous phase to nano-crystal phase of various grain sizes within a single inorganic thin film. These NBAS process effects can lead to the formation of a nano-crystal structure barrier layer which effectively limits gas diffusion through the pathways between grain boundaries. Our results verify the nano-crystal structure of the NBAS processed $Al_2O_3$ single gas barrier layer through dielectric constant measurement, break down field measurement, and TEM analysis. Finally, the WVTR of $Al_2O_3$ nano-crystal structure single gas barrier layer was measured to be under $5{\times}10^{-6}g/m^2$/day therefore we can confirm that NBAS processed $Al_2O_3$ nano-crystal structure single gas barrier layer is suitable for OLED application.

  • PDF

Al2O3 High Dense Single Layer Gas Barrier by Neutral Beam Assisted Sputtering (NBAS) Process

  • 장윤성;홍문표
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.157-157
    • /
    • 2015
  • Recently, the growing interest in organic microelectronic devices including OLEDs has led to an increasing amount of research into their many potential applications in the area of flexible electronic devices based on plastic substrates. However, these organic devices require a gas barrier coating to prevent the permeation of water and oxygen because organic materials are highly susceptible to water and oxygen. In particular, high efficiency OLEDs require an extremely low water vapor transition rate (WVTR) of $1{\times}10^{-6}g/m^2day$. The Key factor in high quality inorganic gas barrier formation for achieving the very low WVTR required ($1{\times}10^{-6}g/m^2day$) is the suppression of defect sites and gas diffusion pathways between grain boundaries. In this study NBAS process was introduced to deposit enhanced film density single gas barrier layer with a low WVTR. Fig. 1. shows a schematic illustration of the NBAS apparatus. The NBAS process was used for the $Al_2O_3$ nano-crystal structure films deposition, as shown in Fig. 1. The NBAS system is based on the conventional RF magnetron sputtering and it has the electron cyclotron resonance (ECR) plasma source and metal reflector. $Ar^+$ ion in the ECR plasma can be accelerated into the plasma sheath between the plasma and metal reflector, which are then neutralized mainly by Auger neutralization. The neutral beam energy is controlled by the metal reflector bias. The controllable neutral beam energy can continuously change crystalline structures from an amorphous phase to nanocrystal phase of various grain sizes. The $Al_2O_3$ films can be high film density by controllable Auger neutral beam energy. we developed $Al_2O_3$ high dense barrier layer using NBAS process. We can verified that NBAS process effect can lead to formation of high density nano-crystal structure barrier layer. As a result, Fig. 2. shows that the NBAS processed $Al_2O_3$ high dense barrier layer shows excellent WVTR property as a under $2{\times}10^{-5}g/m^2day$ in the single barrier layer of 100nm thickness. Therefore, the NBAS processed $Al_2O_3$ high dense barrier layer is very suitable in the high efficiency OLED application.

  • PDF

인삼 및 가공품 중 difenoconazole의 잔류특성 및 가공계수 (Residual Characteristics and Processing Factors of Difenoconazole in Fresh Ginseng and Processed Ginseng Products)

  • 노현호;이광헌;이재윤;이은영;박영순;박효경;오재호;임무혁;이용재;백인호;경기성
    • 농약과학회지
    • /
    • 제16권1호
    • /
    • pp.35-42
    • /
    • 2012
  • 수삼을 건삼, 홍삼 및 농축액으로 제조하는 과정 중 difenoconazole의 잔류특성을 구명하고 가공계수를 산출하기 위하여 본 연구를 수행하였다. 약제 살포는 2009년(4년근)과 2010년(5년근) 2년에 걸쳐 안전사용기준에 준하여 약제를 살포하였으며, 수확한 인삼은 (주)한국인삼공사의 공인된 방법으로 건삼과 홍삼으로 제조한 후 각각의 물과 알코올 농축액을 제조하였다. 수삼 중 시험농약의 검출한계와 정량한계는 0.001과 0.003 mg/kg이었으며, 가공품의 경우 0.002와 0.007 mg/kg이었다. 4년근 수삼 및 가공품의 잔류량은 0.006-0.017 mg/kg이었으며, 5년근 수삼 및 가공품의 잔류량은 0.042-0.196 mg/kg으로 5년근 수삼 및 가공품 잔류량이 4년근 수삼 및 가공품 잔류량 보다 증가하였다. 수삼과 가공품의 잔류량 비로 산출한 가공계수는 4년근 건삼의 경우 1.71-2.17, 홍삼 1.62-2.03, 농축액 1.76-2.98이었으며, 5년근의 경우 건삼 2.89-3.07, 홍삼 1.89-2.20, 농축액 2.36-4.67이었다.

Serial Flow Microwave Thermal Process System for Liquid Foods

  • Kim, Young-Jin;Lim, Seok-Won;Chun, Jae-Kun
    • Food Science and Biotechnology
    • /
    • 제14권4호
    • /
    • pp.446-449
    • /
    • 2005
  • Two single-magnetron heating systems (SM-HS), each with a helical glass heat exchanger and a cylindrical cavity, were combined to make a two-magnetron-in-series heating system (2MS-HS) in order to increase the heating capacity. A comparison using water showed that the heating performance of the 2MS-HS was increased by two-fold as compared to that of the SM-HS, resulting in energy saving of 7.0% in 2MS-HS. Pasteurization test of 2MS-HS conducted with model food (LB broth contaminated with Bacillus subtilis) showed two-fold higher treatment capacity compared to SM-HS. Relationships between outlet temperature of the processed food, flow rate, and residence time in the 2MS-HS were established for water. Optimum pasteurization capacity was 17 s, $73^{\circ}C$, at flow rate of 280 ml/min. The 2MS-HS could be applied to the small-scale pasteurization of liquid food.

Experimental study on multi-level overtopping wave energy convertor under regular wave conditions

  • Liu, Zhen;Han, Zhi;Shi, Hongda;Yang, Wanchang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권5호
    • /
    • pp.651-659
    • /
    • 2018
  • A multi-level overtopping wave energy converter was designed according to the large tidal range and small wave heights in China. It consists of two reservoirs with sloping walls at different levels. The reservoirs share a common outflow duct and a low-head axial turbine. The experimental study was carried out in a laboratory wave-flume to investigate the overtopping performance of the device. The depth-gauges were used to measure the variation of the water level in the reservoirs. The data was processed to derive the time-averaged overtopping discharges. It was found that the lower reservoir can store wave waters at the low water level and break the waves which try to climb up to the upper reservoir. The upper sloping angle and the opening width of the lower reservoir both have significant effects on the overtopping discharges, which can provide more information to the design and optimization of this type of device.

Preliminary Study of Deep Learning-based Precipitation

  • Kim, Hee-Un;Bae, Tae-Suk
    • 한국측량학회지
    • /
    • 제35권5호
    • /
    • pp.423-430
    • /
    • 2017
  • Recently, data analysis research has been carried out using the deep learning technique in various fields such as image interpretation and/or classification. Various types of algorithms are being developed for many applications. In this paper, we propose a precipitation prediction algorithm based on deep learning with high accuracy in order to take care of the possible severe damage caused by climate change. Since the geographical and seasonal characteristics of Korea are clearly distinct, the meteorological factors have repetitive patterns in a time series. Since the LSTM (Long Short-Term Memory) is a powerful algorithm for consecutive data, it was used to predict precipitation in this study. For the numerical test, we calculated the PWV (Precipitable Water Vapor) based on the tropospheric delay of the GNSS (Global Navigation Satellite System) signals, and then applied the deep learning technique to the precipitation prediction. The GNSS data was processed by scientific software with the troposphere model of Saastamoinen and the Niell mapping function. The RMSE (Root Mean Squared Error) of the precipitation prediction based on LSTM performs better than that of ANN (Artificial Neural Network). By adding GNSS-based PWV as a feature, the over-fitting that is a latent problem of deep learning was prevented considerably as discussed in this study.

Alternaria in Food: Ecophysiology, Mycotoxin Production and Toxicology

  • Lee, Hyang Burm;Patriarca, Andrea;Magan, Naresh
    • Mycobiology
    • /
    • 제43권2호
    • /
    • pp.93-106
    • /
    • 2015
  • Alternaria species are common saprophytes or pathogens of a wide range of plants pre- and post-harvest. This review considers the relative importance of Alternaria species, their ecology, competitiveness, production of mycotoxins and the prevalence of the predominant mycotoxins in different food products. The available toxicity data on these toxins and the potential future impacts of Alternaria species and their toxicity in food products pre- and post-harvest are discussed. The growth of Alternaria species is influenced by interacting abiotic factors, especially water activity ($a_w$), temperature and pH. The boundary conditions which allow growth and toxin production have been identified in relation to different matrices including cereal grain, sorghum, cottonseed, tomato, and soya beans. The competitiveness of Alternaria species is related to their water stress tolerance, hydrolytic enzyme production and ability to produce mycotoxins. The relationship between A. tenuissima and other phyllosphere fungi has been examined and the relative competitiveness determined using both an Index of Dominance ($I_D$) and the Niche Overlap Index (NOI) based on carbon-utilisation patterns. The toxicology of some of the Alternaria mycotoxins have been studied; however, some data are still lacking. The isolation of Alternaria toxins in different food products including processed products is reviewed. The future implications of Alternaria colonization/infection and the role of their mycotoxins in food production chains pre- and post-harvest are discussed.