• Title/Summary/Keyword: ProcessInduced Deformation

Search Result 141, Processing Time 0.033 seconds

Effect of the boundary shape of weld specimen on the stress distribution (용접시편의 테두리 모양이 응력 분포에 미치는 영향)

  • Yang, Seung-Yong;Goo, Byeong-Choon
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.348-352
    • /
    • 2004
  • In finite element analysis of mechanical behavior of weld, typical process is first to obtain a finite element model containing residual stress by conducting welding analysis and then to examine the computational specimen for various external loading. The numerical specimen with residual stress has irregular boundary lines since one usually begins the welding analysis from a body having regular straight boundary lines and large thermal contraction takes place during cooling of weld metal. We notice that these numerical weld specimens are different from the real weld specimens as the real specimens are usually cut from a bigger weld part and consequently have straight boundaries neglecting elastic relaxation associated with the cutting. In this paper, an iterative finite element method is described to obtain a weld specimen which is bounded by straight lines. The stress distributions of two types of weld specimen, one with regular and the other with irregular boundaries, are compared to check the effect of the boundary shape. Results show that the stress distribution can be different when large plastic deformation is induced by the application of external loading. In case of elastic small deformation, the difference turns out almost negligible.

  • PDF

The Finite Element Analysis for Prediction of Residual Stresses Induced by Shot Peening (쇼트피닝 잔류응력 예측을 위한 유한요소해석)

  • Kim, Cheol;Yang, Won-Ho;Sung, Ki-Deug;Cho, Myoung-Rae;Ko, Myung-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.218-223
    • /
    • 2000
  • The shot peening is largely used for a surface treatment in which small spherical parts called shots are blasted on a surface of a metallic components with velocities up to 100m/s. This treatment leads to an improvement of fatigue behavior due to the developed compressive residual stresses, and so it has gained widespread acceptance in the automobile and aerospace industries. The residual stress profile on surface layer depends on the parameters of shot peening, which are, shot velocity, shot diameter, coverage, impact angle, material properties etc. and the method to confirm this profile is only measurement by X-ray diffractometer. Despite its importance to automobile and aerospace industries, little attention has been devoted to the accurate modelling of the process. In this paper, the simulation technique is applied to predict the magnitude and distribution of the residual stress and plastic deformation caused by shot peening with the help of the finite element analysis.

  • PDF

Jet-grouting in ground improvement and rotary grouting pile installation: Theoretical analysis

  • Wang, You;Li, Lin;Li, Jingpei;Sun, De'an
    • Geomechanics and Engineering
    • /
    • v.21 no.3
    • /
    • pp.279-288
    • /
    • 2020
  • The permeation grouting is a commonly used technique to improve the engineering geology condition of the soft ground. It is of great significance to predict the permeation range of the grout so as to ensure the effects of grouting. This paper conducts a theoretical analysis of jet-grouting effects in ground improvement and rotary grouting pile installation by utilizing deformation-permeation coupled poroelastic solutions based on Biot's theory and Laplace-Fourier integral transform technique. The exponential function and the intermittent trigonometric function are chosen to represent time-dependent grouting pressure usually encountered in ground improvement and rotary grouting pile installation process, respectively. The results, including the radial displacement, the hoop stress, the excess pore fluid pressure, the radial discharge, and the permeation radius of grout, are presented for different grouting time, radial positions and grouting lengths. Parametric study is conducted to explore the effects of variation of the exponent in the exponential grouting pressure-time relationship on grouting-induced responses. It is expected that the proposed solutions can be used to estimate the permeation range of grouting in ground improvement and rotary grouting pile installation.

Nonlinear model to predict the torsional response of U-shaped thin-walled RC members

  • Chen, Shenggang;Ye, Yinghua;Guo, Quanquan;Cheng, Shaohong;Diao, Bo
    • Structural Engineering and Mechanics
    • /
    • v.60 no.6
    • /
    • pp.1039-1061
    • /
    • 2016
  • Based on Vlasov's torsional theory of open thin-walled members and the nonlinear constitutive relations of materials, a nonlinear analysis model to predict response of open thin-walled RC members subjected to pure torsion is proposed in the current study. The variation of the circulatory torsional stiffness and warping torsional stiffness over the entire loading process and the impact of warping shear deformation on the torsion-induced rotation of the member are considered in the formulation. The torque equilibrium differential equation is then solved by Runge-Kutta method. The proposed nonlinear model is then applied to predict the behavior of five U-shaped thin-walled RC members under pure torsion. Four of them were tested in an earlier experimental study by the authors and the testing data of the fifth one were reported in an existing literature. Results show that the analytical predictions based on the proposed model agree well with the experimental data of all five specimens. This clearly shows the validity of the proposed nonlinear model analyzing behavior of U-shaped thin-walled RC members under pure torsion.

Application of CAE in Injection Molding Process of Automobile Part (컴퓨터지원공학(CAE)을 활용한 자동차 부품 개선)

  • Cho, Junghwan;Chang, Woojin;Park, Young Hoon;Choe, Soonja
    • Applied Chemistry for Engineering
    • /
    • v.18 no.5
    • /
    • pp.407-414
    • /
    • 2007
  • Using the MPI (Moldflow Plastics Insight) software from Moldflow Co., the optimum conditions for producing the upper part of the automobile air cleaner were obtained for 20% talc filled polypropylene (PP). The analysis was carried out to solve the cracking problem between upper and lower parts and the improved process was proposed using the flow balance. The comparative results between the conventional process, CASE-1, with one-pin gate and the new process (CASE-2) comprising two-pin gate system are the followings. In the case of CASE-2, the shorter filling time and reduced cycle time induced an improved production and processibility. In addition, the orientation and volumetric shrinkage are similar to those observed in the lower part, but the assembly, deformation, and physical characteristics are enhanced. The problem induced by the CASE-1 did not originate from the residual stress, but from the difference in the size of the upper part air cleaner after shrinkage. Thus, the orientation problem was expected to improve by optimizing the gate structure.

Evaluation of Material Properties in Austenite Stainless Steel Sheet with Scanning Acoustic Microscopy (초음파현미경을 이용한 오스테나이트 스테인레스강의 재료특성 평가)

  • Park, Tae-Sung;Kasuga, Yukio;Park, Ik-Keun;Kim, Kyoung-Suk;Miyasaka, Chiaki
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.2
    • /
    • pp.267-275
    • /
    • 2012
  • Austenite stainless steel 304 has properties of high resistance to corrosion and temperature changes. Therefore, this material is widely used in various of industries. However, when the material is subjected to heating and cooling cycles the forming accuracy, for example, the right angle associated with a sharp bend such as corner is lost. This phenomenon is caused by the reversion of the deformation-induced martensite into austenite when the temperature in increased. This result in misfit of a structure or an assembly, and an increase in residual stress. Hence, it is important to understand this process. In this study, to evaluate the mechanical behavior of the deformation-induced martensite and reversed austenite, a scanning acoustic spectroscope including the capability of obtaining both phase and amplitude of the ultrasonic wave (i.e., the complex V(z) curve method) was used. Then, the velocities of the SAW propagating within the specimens made in different conditions were measured. The experimental differences of the SAW velocities obtained in this experiment were ranging from 2,750 m/s to 2,850 m/s, and the theoretical difference was 3.6% under the assumption that the SAW velocity was 2,800 m/s. The error became smaller as the martensite content was increased. Therefore, the SAW velocity may be a probe to estimate the marternsite content.

WELDING-INDUCED BUCKLING INSTABILITIES IN THIN PLATES

  • Han, Myoung-Soo;Tsai, Chon-Liang
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.661-667
    • /
    • 2002
  • Welding-induced buckling distortion is one of the most problematic concerns in both design and fabrication of welded thin-plate structures. This paper deals with experimental and numerical results of the welding-induced longitudinal and/or buckling distortion occurring in welding of 6mm-thick AH36 high strength steel plates. Effects of the heat input and the plate size on the distortion were experimentally evaluated for square plates. Bead-on-plate welding was performed with the submerged arc welding process along the middle line of plate specimens. Experimental results showed that the longitudinal distortion made a single curvature in the plate, and the distortion magnitude along the weld centerline was proportional to the heat input and the plate size. The experimental results were used to examine the validity of the numerical simulation procedure for welding-induced distortion where the longitudinal distortion mode and magnitude were numerically quantified. Three-dimensional, large deformation, welding simulations were performed for selected weld models. Numerical results of the distortion mode and magnitude were in a good agreement with experimental ones. Depending on the presence of halting the distortion growth during the cooling cycle of welding, the condition discriminating buckling distortion from longitudinal distortion was established. Eigenvalue analyses were performed to check the buckling instability of tested plates with different sizes subjected to different heat inputs. The perturbation load pattern for the analysis was extracted from longitudinal inherent strain distributions. Critical buckling curve from the eigenvalue analyses revealed that the buckling instability is manifested when plate size or heat input increases.

  • PDF

Grinding robot system for car brazing bead

  • Kang, Hyo-Sik;Lee, Woo-Ho;Park, Jong-Oh;Lee, Gwang-Se;Shin, Hyoun-Oh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.160-163
    • /
    • 1993
  • In this paper, design of an automatic grinding robot system for car brazing bead is introduced. Car roof and side panels are joined using brazing, and then the brazing bead is processed so that the bead is invisible after painting. Up to now the grinding process is accomplished manually. The difficulties in automation of the grinding process are induced by variation of position and shape of the bead and non-uniformity of the grinding area due to surface deformation. For each car, the grinding area including the brazing bead is sensed and then modeled using a 2-D optical sensor system. Using these model data, the position and the direction of discrete points on the car, body surface are obtained to produce grinding path for a 6 degrees of freedom grinding robot. During the process, it is necessary to sense the reaction forces continuously to prepare for the unexpected circumstances. In addition, to meet the line cycle time it is necessary to reduce the required time in sensing, signal processing, modeling, path planning and data transfer by utilizing real-time communication of the information. The key technique in the communication and integration of the complex information is obtaining in-field reliability. This automatic grinding robot system may be regarded as a jump in the intelligent robot processing technique.

  • PDF

A Study on Distortion Induced by Elasticity and Heat Treatment of Automotive Bevel Gears (자동차용 베벨 기어의 탄성변형과 열처리변형에 관한 연구)

  • Kim H. Y.;Kim M. G.;Cho J. R.;Bae W. B.;Lee J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.170-173
    • /
    • 2004
  • Recently many kinds of gears have been produced by forging in order to enhance the mechanical properties of the gears and the productivity of the process. Developments in forging technology are the reason for the increased usage. However, a critical problem of the forged gears is the dimensional change or distortion caused by elastic recovery after forging, and relief of the residual stresses during subsequent heat treatments. Distortion is of great concern to the manufacturers of precision parts, because it influences directly the dimensional accuracy and the grade of carburized bevel gears. In the present paper, distortion due to elastic and heat treatment of bevel gears Is investigated. Distortions of forged gears, machined gears and die aremeasured and compared. Numerical analysis is used to simulate the complete cold forged process and heat treatment process for the machined gears and shows good agreement with the experimental measurements.

  • PDF

A Study on Selective Laser Melting Process Considering Phase Transformation for Ti-6Al-4V (Ti-6Al-4V 합금에서 상 변화를 고려한 Selective Laser Melting 프로세스 연구)

  • Song, Seong-Il;Park, Joo-Heon;Jin, Byeong-Ju;Lee, Kyoung-Don
    • Journal of Korea Foundry Society
    • /
    • v.39 no.6
    • /
    • pp.110-115
    • /
    • 2019
  • Recently, various studies have been conducted on additive manufacturing technology developed using metal materials. In this study, a numerical analysis was introduced to analyze the effects of the thermal deformation and residual stress which arise during the SLM (selective laser melting) manufacturing process. A phase-transformation mechanism is implemented with the use of the Ti-6Al-4V material, in which a solid-state phase transformation (SSPT) can be induced during a numerical analysis. In this case, the phase of the Ti-6Al-4V material changes from a powder to a solid state and then to the Martensite phase in sequence during heating and cooling steps. The numerical analysis during the SLM process was verified by comparing the results of tensile tests with those from the numerical analysis based on the SSPT material properties.