• Title/Summary/Keyword: ProcessInduced Deformation

Search Result 141, Processing Time 0.028 seconds

Observation of the Deformation-Induced Anisotropy in the Square-Die Extrusion Process (평금형 압출공정에 대한 변형이방성 예측 알고리즘의 적용)

  • 이창희;양동열;이용신
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.86-89
    • /
    • 2002
  • Due to extremely large reduction of area or extrusion ratio in ordinary production of extruded profiles, anisotropy is naturally induced by large severe deformation during the extrusion process. Therefore, the anisotropic properties play a great role in the post processing of extruded profiles, such as in bending. Moreover, undesirable deformation will be involved when the deformation-induced anisotropy is ignored. In order to observe the deformation-induced anisotropy of the thin-walled product, the proposed algorithm is applied to some chosen industrial extrusion processes. In the resent work, the method for prediction of deformation-induced anisotropy employing the Barlats six-component yield potential to the rigid-plastic finite element method is proposed. The proposed algorithm is verified with the comparison to the crystallographic texture analysis, and then applied to the C-section exclusion process using a square die. The predicted anisotropy is then compared with the experimental and computational observations for validating the proposed algorithm.

  • PDF

Observation of the Deformation-Induced Anisotropy in the Square-Die Extrusion Process (평금형 압출공정에 대한 변형이방성 예측 알고리즘의 적용)

  • 이창희;양동열;이용신
    • Transactions of Materials Processing
    • /
    • v.11 no.8
    • /
    • pp.724-730
    • /
    • 2002
  • Due to extremely large reduction of area or extrusion ratio in ordinary production of extruded profiles, anisotropy is naturally induced by large severe deformation during the extrusion process. Therefore, the anisotropic properties play a great role in the post processing of extruded profiles, such as in bending. Moreover, undesirable deformation will be involved when the deformation-induced anisotropy is ignored. In order to observe the deformation-induced anisotropy of the thin-walled product, the proposed algorithm is applied to some chosen industrial extrusion processes. In the present work, the method for prediction of deformation-induced anisotropy employing the Barlats six-component yield potential to the rigid-plastic finite element method is proposed. The proposed algorithm is verified with the comparison to the crystallographic texture analysis, and then applied to the C-section extrusion process using a square die. The predicted anisotropy is then compared with the experimental and computational observations for validating the proposed algorithm.

Effect of Deformation Energy on the Indentation Induced Etch Hillock (변형 에너지가 나노압입 유기 Hillock 현상에 미치는 영향)

  • Kim H. I.;Youn S. W.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.225-228
    • /
    • 2005
  • The purpose of this study is to investigate effects of the plastic/elastic deformation energy on wet etching characterization on the surface of material by using the nanoindentation and HF wet etching technique. Indents were made on the surface of Pyrex 7740 glass by the hyperfine indentation process with a Berkovich diamond indenter, and they were etched in $50\;wt\%$ HF solution. After etching process, convex structure was obtained due to the deformation-induced hillock phenomena. In this study, effects of indentation process parameters (normal load, loading rate) on the morphologies of the indented surfaces after isotopic etching were investigated from an angle of deformation energies.

  • PDF

Deformation Induced Anisotropy in Profile Extrusion of Aluminium Alloys (알루미늄 압출공정에서의 변형이방성에 대한 연구)

  • Lee C. H.;Yang D. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.37-41
    • /
    • 2000
  • Extruded Profiles of Aluminum alloys have been widely used as parts and frames in mechanical and construction structures. Nowadays, mechanical processing of extruded Al alloy profiles is often employed for various industrial applications. Especially, the bending process is more and more applied and the process is greatly influenced by the distributed mechanical properties in the extruded profiles. Due to large reduction of area or extrusion ratio in ordinary production of extruded profiles, anisotropy is naturally induced by large severe deformation during the extrusion process. Therefore, the anisotropy properties play a great role in the bending process, as a post processing of extruded profiles and errors will be involved when the extruded profiles are treated as isotropic material, ignoring the induced anisotropy in the thin-walled extruded product. In the present work, the anisotropic material change is simulated, as a simplified method, employing Barlats six-component yield criterion in the rigid-plastic finite element method. Finite element computations are carried out for extrusion of a thin-walled part.

  • PDF

A Study on the Pultrusion Process of Thermosetting Composites Considering Thermally induced Deformation (열변형을 고려한 열경화성수지 복합재료의 펄트루젼 공정에 관한연구)

  • 김대환;이우일
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.04a
    • /
    • pp.103-108
    • /
    • 1999
  • A synthesized model of pultrusion process considering thermally induced deformatiion was established. The model was composed of liquid resin flow model thermo-chemical analysis and linear elastic analysis. in order to verify the above-mentioned models several experiments were performed. A laboratory scale pultrusion line was established and glass/polyester composites were fabricated. the experimental results were compared with the calculated ones. The model successfully could estimate degree of cure pulling force and amount of process-induced deformation.

  • PDF

Trends in Predicting Thermoforming-Induced Deformation of Thermoplastic Composites: A Review (열가소성 복합재의 열성형 변형 예측 연구 동향)

  • Solmi Kim;Dong-Hyeop Kim;Sang-Woo Kim;Soo-Yong Lee
    • Composites Research
    • /
    • v.37 no.4
    • /
    • pp.275-285
    • /
    • 2024
  • This paper presents research trends in predicting the deformation of carbon fiber reinforced thermoplastic (CFRTP) composites during thermoforming. Various thermoforming variables that must be considered during the CFRTP thermoforming stages are investigated, and factors influencing process-induced deformation are analyzed. Key material behavior models, such as crystallinity and viscoelastic, which are important for predicting thermoforming deformation, are also examined. Additionally, trends in predicting CFRTP thermoforming deformation using finite element analysis with material behavior models and machine learning techniques are analyzed. In summary, more precise prediction techniques for thermoforming deformation can be developed by associating them with material behavior models and considering thermoforming variables.

A Study of Mechanochemical Hyperfine-Writing Technique Using Deformation Induced Etch Hillock Phenomena (변형유기 식각 힐록 현상을 이용한 기계화학적 극미세 Writing 기법에 대한 연구)

  • Kang Chung Gil;Youn Sung Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.7 s.172
    • /
    • pp.71-78
    • /
    • 2005
  • The purpose of this study is to suggest a hyperfine maskless writing technique by using the nanoindentation and HF wet etching technique. Indents were made on the surface of Pyrex7740 glass by the hyperfine indentation process with a Berkovich diamond indenter, and they were etched in $50\;wr\%$ HF solution. After etching process, convex structure was obtained due to the deformation-induced hillock phenomena. In this study, effects of indentation process parameters (etching time, normal load, loading .ate, hold-time at the maximum load) on the morphologies of the indented surfaces after isotopic etching were investigated from an angle of deformation energies. Finally, sample characters were written to show the possibility of the application.

Thermal Deformation and Residual Stress Analysis of Lightweight Piezo-composite Curved Actuator (복합재료와 압전재료로 구성된 곡면형 작동기의 열변형 및 잔류응력 해석)

  • 정재한;박기훈;박훈철;윤광준
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.126-129
    • /
    • 2001
  • LIPCA (LIghtweight Piezo-composite Curved Actuator) is an actuator device which is lighter than other conventional piezoelectric ceramic type actuator. LIPCA is composed of a piezoelectric ceramic layer and fiber reinforced light composite layers, typically a PZT ceramic layer is sandwiched by a top fiber layer with low CTE (coefficient of thermal expansion) and base layers with high CTE. LIPCA has curved shape like a typical THUNDER (thin-layer composite unimorph feroelectric driver and sensor), but it is lighter an than THUNDER. Since the curved shape of LIPCA is from the thermal deformation during the manufacturing process of unsymmetrically laminated lay-up structure, an analysis for the thermal deformation and residual stresses induced during the manufacturing process is very important for an optimal design to increase the performance of LIPCA. To investigate the thermal deformation behavior and the induced residual stresses of LIPCA at room temperature, the curvatures of LIPCA were measured and compared with those predicted from the analysis using the classical lamination theory. A methodology is being studied to find an optimal stacking sequence and geometry of LIPCA to have larger specific actuating displacement and higher force. The residual stresses induced during the cooling process of the piezo-composite actuators have been calculated. A lay-up geometry for the PZT ceramic layer to have compression stress in the geometrical principal direction has been designed.

  • PDF

Effect of Specimen Geometry on deformation in laser forming of sheet metal (레이저 성형에서 시편의 기하학적 형상에 따른 변형의 양상에 관한 연구)

  • Nadeem, Q.;Seong, W.J.;Na, S.J.
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.22-22
    • /
    • 2009
  • Laser forming is a promising technology in manufacturing, such as in the shipbuilding, automobile, microelectronics, aerospace and other manufacturing industries. This process forms the sheet metal by utilization of laser-induced thermal stresses. Laser forming process has been studied extensively for rectangular shape geometry. This basic study presents the change in deformation behavior of sheet metal during transition from linear to curved geometries and irradiations as well. A series of experiments have been conducted on a wide range of specimen geometries such as quarter-circular and half circular plate. The reasons for this behavior have been analyzed. Results are compared and analyzed by simulations using ABAQUS. Influence of developed stresses on the bending has been investigated. This study provides the more understanding of forming mechanism influenced by geometry effect.

  • PDF

Influence of Chucking Forces upon the Accuracy of Circular Hole in Boring Process on the Turning (선반으로 보링가공 할 때 척킹력이 가공 정도에 미치는 영향)

  • Lee, Sang-Soo;Kang, Shin-Gil;Jeon, Young-Seog
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.58-64
    • /
    • 2008
  • The cutting process of materials is accompanied with the elastic and plastic deformation due to chucking forces in the boring process of thin holes on the turning. Upon removal of chucking forces at the end of process, the original shape is remained in the plastic deformation; on the other hand, it is modified in the elastic deformation due to spring back. Fixing materials by chucks on the turning has influence on roundness because the process is conducted with unbalanced distribution load induced from the fixing of three jaws. Moreover, the amount of spring back depends on the magnitude of fixing forces. We studied the change of roundness according to fixing forces as well as the method to reduce the influence of chucking forces.