• 제목/요약/키워드: Process-error model

검색결과 1,171건 처리시간 0.023초

AI 기법을 활용한 정수장 수질예측에 관한 연구 (Study on water quality prediction in water treatment plants using AI techniques)

  • 이승민;강유진;송진우;김주환;김형수;김수전
    • 한국수자원학회논문집
    • /
    • 제57권3호
    • /
    • pp.151-164
    • /
    • 2024
  • 상수도 공급을 위한 정수장에서 전염소 또는 중염소 공정이 도입된 수처리 공정의 염소농도 관리에 필요한 공정제어를 위하여 AI 기술을 활용한 수질예측 기법이 연구되고 있다. 본 연구에서는 정수장 수처리 공정에서 실시간으로 관측, 생산되고 있는 수량·수질자료를 이용하여 염소소독 공정제어 자동화를 목적으로 침전지 후단의 잔류염소 농도를 예측하기 위한 AI 기반 예측모형을 개발하였다. AI 기반 예측모형은 과거 수질 관측자료를 학습하여 이후 시점의 수질에 대한 예측이 가능한 기법으로, 복잡한 물리·화학·생물학적 수질모형과 달리 간단하고 효율적이다. 다중회귀 모형과 AI 기반 모형인 랜덤포레스트와 LSTM을 이용하여 정수장의 침전지 후단 잔류염소 농도를 예측하여 비교하였다. 최적의 잔류염소 농도 예측을 위한 AI 모형의 입출력 구조로는 침전지 전단의 잔류염소 농도, 침전지 탁도, pH, 수온, 전기전도도, 원수의 유입량, 알칼리도, NH3 등을 독립변수로, 예측하고자 하는 침전지 유출수의 잔류염소 농도를 종속변수로 선정하였다. 독립변수는 침전지 후단의 잔류염소에 영향이 있는 정수장에서 확보가 가능한 관측자료중에서 분석을 통해 선별하였으며, 분석 결과 연구대상 정수장인 정수장에서는 중회귀모형, 신경망모형, 모델트리 및 랜덤포레스트 모형을 비교한 결과 랜덤포레스트에 기반한 모형오차가 가장 낮게 도출되는 결과를 얻을 수 있었다. 본 연구에서 제시하는 침전지 후단의 적정 잔류염소 농도 예측값은 이전 처리단계에서 염소주입량의 실시간 제어가 가능토록 할 수 있어 수처리 효율 향상과 약품비 절감에 도움이 될 것으로 기대된다.

이산화황 불순물이 이산화탄소 해양 지중저장 공정설계에 미치는 영향 평가: 상태량 모델의 비교 분석 및 이성분 매개변수 최적화 (Impact of Sulfur Dioxide Impurity on Process Design of $CO_2$ Offshore Geological Storage: Evaluation of Physical Property Models and Optimization of Binary Parameter)

  • 허철;강성길;조맹익
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제13권3호
    • /
    • pp.187-197
    • /
    • 2010
  • 화석연료를 사용하는 발전소 및 제철소 등 대규모 발생원에서 배출되는 $CO_2$를 포집하고 이를 대수층이나 유가스전과 같은 지질학적 구조에 장기간 저장하는 이산화탄소 포집 및 저장기술(Carbon dioxide Capture and Storage, CCS)이 기후변화 대응기술로서 국내외적으로 주목 받고 있다. 이와 같은 CCS 기술을 구현하기 위해서는 포집된 대용량의 $CO_2$ 혼합물을 파이프라인이나 선박 등을 통해 수송하는 과정이 필요하고, 이러한 공정에 대한 기존의 연구는 주로 순수 $CO_2$를 대상으로 하여 진행되어 왔다. 그러나 일반적으로 발전소 및 제철소 등에서 포집된 $CO_2$ 혼합물에는 $N_2$, $O_2$, Ar, $H_2O$, $SO_2$, $H_2S$ 등과 같은 불순물들을 포함하고 있다. 이러한 $CO_2$ 혼합물 내 불순물들은 처리하고자 하는 $CO_2$ 혼합물의 열역학 상태량 등을 변화시킴으로써 압축, 정제, 수송 및 저장 공정들에 커다란 영향을 미칠 수 있다. 본 논문에서는 이러한 불순물 중 황성분이 함유된 $SO_2$가 포함된 $CO_2$ 혼합물의 수송 및 저장 공정을 설계하는데 있어 매우 중요한 $CO_2$ 혼합물의 열역학 거동을 모사하기 위한 상태량 모델들을 비교 분석하였다. 이를 위해 BWRS EOS, PR EOS, PRBM EOS, RKS EOS, SRK EOS 그리고 NRTL-RK 모델과 같은 총 6가지 물리적 상태량 모델을 이용하여 $CO_2-SO_2$ 혼합물의 VLE 거동을 수치계산하고 이를 실험 데이터와 비교하였다. 또한, $CO_2$, $SO_2$와 같은 서로 다른 분자간의 상호작용 효과를 보완하기 위하여 상태량 모델을 이용한 계산결과와 실험결과와의 차이를 정량화하여 각각의 상태량 모델의 예측능력을 계량화 비교분석하였고 이로부터 $CO_2-SO_2$ 혼합물에 대한 최적의 이성분 매개변수 값들을 도출하였다.

여객 서비스 개선을 위한 승객예고 시스템 개발 (Development of Passenger Forecasting System to Improve the Service for the Passenger in the Terminal Building)

  • 이상용;유광의
    • 대한교통학회지
    • /
    • 제23권7호
    • /
    • pp.181-190
    • /
    • 2005
  • 공항이 대형화되면서 공항 수속에 소요되는 시간은 여객서비스 측면에서 중요하게 부각되는 사항이다. 국제민간기구에서는 이를 국제적으로 표준화하여 전체 출입국 소요시간이 일정수준을 넘지 않도록 권고하고 있다. 승객예고 모델은 체크인카운터, 출국장, 입국장 등 공항수속 지역에서 여객의 시간대별 수요를 예측하기 위해 개발하였다. 출국 승객예고의 경우, 시간적 개념에서 체크인 수속 완료시갈 출국장 이동시간을 모델화하였고, 공간적 개념에서 체크인카운터 및 출국장 선택을 모델화하였다. 입국 및 환승 승객 예고의 경우, 시간적 개념에서 항공기 도착 후 게이트 접속, 승객하기 후 입국장 이동시간을, 공간적 개념에서 게이트 및 입국장 선택을 모델 화하였다. 출국 및 입국 예고의 평균 오차율은 각 15%, 10% 수준으로 파악되었는데, 항공사 예약자료의 오차율 5%를 감안할 때 우수한 정확도를 가지는 것으로 평가된다. 이와 같은 초단기 수요예측 모델 개발을 통해 승객의 집중도에 따라 탄력적으로 자원을 배분할 수 있게 됨으로써 한 차원 높은 서비스를 제공하게 된 것으로 판단된다.

Application of AutoFom III equipment for prediction of primal and commercial cut weight of Korean pig carcasses

  • Choi, Jung Seok;Kwon, Ki Mun;Lee, Young Kyu;Joeng, Jang Uk;Lee, Kyung Ok;Jin, Sang Keun;Choi, Yang Il;Lee, Jae Joon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권10호
    • /
    • pp.1670-1676
    • /
    • 2018
  • Objective: This study was conducted to enable on-line prediction of primal and commercial cut weights in Korean slaughter pigs by AutoFom III, which non-invasively scans pig carcasses early after slaughter using ultrasonic sensors. Methods: A total of 162 Landrace, Yorkshire, and Duroc (LYD) pigs and 154 LYD pigs representing the yearly Korean slaughter distribution were included in the calibration and validation dataset, respectively. Partial least squares (PLS) models were developed for prediction of the weight of deboned shoulder blade, shoulder picnic, belly, loin, and ham. In addition, AutoFom III's ability to predict the weight of the commercial cuts of spare rib, jowl, false lean, back rib, diaphragm, and tenderloin was investigated. Each cut was manually prepared by local butchers and then recorded. Results: The cross-validated prediction accuracy ($R^2cv$) of the calibration models for deboned shoulder blade, shoulder picnic, loin, belly, and ham ranged from 0.77 to 0.86. The $R^2cv$ for tenderloin, spare rib, diaphragm, false lean, jowl, and back rib ranged from 0.34 to 0.62. Because the $R^2cv$ of the latter commercial cuts were less than 0.65, AutoFom III was less accurate for the prediction of those cuts. The root mean squares error of cross validation calibration (RMSECV) model was comparable to the root mean squares error of prediction (RMSEP), although the RMSECV was numerically higher than RMSEP for the deboned shoulder blade and belly. Conclusion: AutoFom III predicts the weight of deboned shoulder blade, shoulder picnic, loin, belly, and ham with high accuracy, and is a suitable process analytical tool for sorting pork primals in Korea. However, AutoFom III's prediction of smaller commercial Korean cuts is less accurate, which may be attributed to the lack of anatomical reference points and the lack of a good correlation between the scanned area of the carcass and those traits.

Landsat 8 위성 기반 고해상도 지표면 광대역 알베도 산출 (Landsat 8-based High Resolution Surface Broadband Albedo Retrieval)

  • 이다래;서민지;이경상;최성원;성노훈;김홍희;진동현;권채영;허모랑;한경수
    • 대한원격탐사학회지
    • /
    • 제32권6호
    • /
    • pp.741-746
    • /
    • 2016
  • 알베도는 태양에너지의 흡수량을 결정하는 주요 기후 변수 중 하나로서, 이러한 알베도를 산출하는 것은 기후 변화 연구에 있어 중요한 과정이다. 이 때, 산출된 알베도 자료를 효율적으로 사용하기 위해서는 높은 공간해상도와 장기간의 일관성 있는 산출이 중요하게 고려된다. 따라서 본 연구에서는 Landsat 8을 기반으로 Landsat 7과의 일관성을 유지한 고해상도 지표면 광대역 알베도를 산출하였다. 먼저, Landsat 7과 Landsat 8의 채널 별 일관성을 분석한 결과, 상관계수(R)가 평균 0.96으로 높은 상관성을 보였다. 이러한 결과를 바탕으로 Landsat 7 알베도와 Landsat 8 반사도 채널 자료를 다중회귀분석에 적용하여 Landsat 8 광대역 알베도 전환 식을 도출하였다. 도출된 식을 통해 Landsat 8 지표면 광대역 알베도를 산출하고, Landsat 7 알베도 자료와 비교하여 검증하였다. 그 결과 R-square($R^2$)가 0.89, Root Mean Square Error (RMSE)가 0.003의 높은 정확도를 보였다.

국립해양조사원 해양예측시스템 소개 (I): 현업 운영 전략, 외부 해양·기상 자료 내려 받기 및 오류 알림 기능 (A Technical Guide to Operational Regional Ocean Forecasting Systems in the Korea Hydrographic and Oceanographic Agency (I): Continuous Operation Strategy, Downloading External Data, and Error Notification)

  • 변도성;서광호;박세영;정광영;이주영;최원진;신재암;최병주
    • 한국해양학회지:바다
    • /
    • 제22권3호
    • /
    • pp.103-117
    • /
    • 2017
  • 이 노트는 국립해양조사원이 5년(2012~2016년)간에 걸쳐 지역해(동해, 황 동중국해) 수치예측시스템을 구축하여 자동으로 끊임없이 운영하면서 확보한 기술들 중 다음 3가지를 담고 있다. (1) 끊임없이 3일 해양예측 자료를 생산하기 위한 전략, (2) 매일 특정시각에 외부 해양 기상자료(HYCOM, NOAA/NCEP GFS)를 안정적으로 내려 받는 방법과 (3) 해양예측시스템 운영자들이 휴대전화 단문 메시지 서비스(Short Message Service)를 이용하여 해양예측시스템 수행 시 발생하는 시스템 오류를 신속하게 파악할 수 있는 기능에 관하여 기술하였다. 이들 기본 기술과 운영시스템 구성의 기본 개념은 지역해와 연안 해양 수치예측시스템을 자동으로 운영하는 체계를 구축하는 데 있어서 유용하게 사용될 것이다.

오토인코더 기반의 잡음에 강인한 계층적 이미지 분류 시스템 (A Noise-Tolerant Hierarchical Image Classification System based on Autoencoder Models)

  • 이종관
    • 인터넷정보학회논문지
    • /
    • 제22권1호
    • /
    • pp.23-30
    • /
    • 2021
  • 본 논문은 다수의 오토인코더 모델들을 이용한 잡음에 강인한 이미지 분류 시스템을 제안한다. 딥러닝 기술의 발달로 이미지 분류의 정확도는 점점 높아지고 있다. 하지만 입력 이미지가 잡음에 의해서 오염된 경우에는 이미지 분류 성능이 급격히 저하된다. 이미지에 첨가되는 잡음은 이미지의 생성 및 전송 과정에서 필연적으로 발생할 수밖에 없다. 따라서 실제 환경에서 이미지 분류기가 사용되기 위해서는 잡음에 대한 처리 및 대응이 반드시 필요하다. 한편 오토인코더는 입력값과 출력값이 유사하도록 학습되어지는 인공신경망 모델이다. 입력데이터가 학습데이터와 유사하다면 오토인코더의 출력데이터와 입력데이터 사이의 오차는 작을 것이다. 하지만 입력 데이터가 학습데이터와 유사성이 없다면 오토인코더의 출력데이터와 입력데이터 사이의 오차는 클 것이다. 제안하는 시스템은 오토인코더의 입력데이터와 출력데이터 사이의 관계를 이용한다. 제안하는 시스템의 이미지 분류 절차는 2단계로 구성된다. 1단계에서 분류 가능성이 가장 높은 클래스 2개를 선정하고 이들 클래스의 분류 가능성이 서로 유사하면 2단계에서 추가적인 분류 절차를 거친다. 제안하는 시스템의 성능 분석을 위해 가우시안 잡음으로 오염된 MNIST 데이터셋을 대상으로 분류 정확도를 실험하였다. 실험 결과 잡음 환경에서 제안하는 시스템이 CNN(Convolutional Neural Network) 기반의 분류 기법에 비해 높은 정확도를 나타냄을 확인하였다.

정밀도로지도 제작을 위한 도로 노면선 표시의 자동 도화 및 구조화 (Automatic Drawing and Structural Editing of Road Lane Markings for High-Definition Road Maps)

  • 최인하;김의명
    • 한국측량학회지
    • /
    • 제39권6호
    • /
    • pp.363-369
    • /
    • 2021
  • 정밀도로지도는 자율주행차의 기본 인프라로 활용되어 최신 도로정보가 신속하게 반영되어야 한다. 하지만 현재 정밀도로지도 공정 중 객체 도화 및 구조화 편집과정이 수작업으로 이루어지며 주요 구축 대상인 도로 노면선 표시의 레이어를 생성하는데 가장 오랜 시간이 소요된다. 이에 본 연구에서는 선행 연구에서 기학습된 포인트넷(PointNet) 모델을 통해 색상 유형(백색, 청색, 황색)이 예측된 도로 노면선 표시의 포인트 클라우드를 입력 데이터로 활용하였고, 이를 기반으로 본 연구에서는 도로 노면선 표시 레이어의 도화 및 구조화 편집을 자동화하는 방법론을 제안하였다. 제안한 방법론을 통해 구축한 3차원 벡터 데이터의 활용성을 검증하기 위해 정밀도로지도 품질검사 기준에 따라 정확도를 분석하였다. 벡터 데이터의 위치정확도 검사에서 수평 오차와 수직 오차에 대한 평균제곱근오차(RMSE: Root Mean Square Error)는 0.1m 이내로 나타나 적합성을 검증하였으며, 구조화 편집 정확도 검사에서 선표시 유형과 선규제 유형의 구조화 정확도가 모두 88.235%로 나타나 활용성을 검증하였다. 따라서, 본 연구에서 제안한 방법론으로 정밀도로지도를 위한 도로 노면선 표시의 벡터 데이터를 효율적으로 구축할 수 있는 것을 알 수 있었다.

드론을 활용한 지하시설물측량 및 3D 시각화 (Underground Facility Survey and 3D Visualization Using Drones)

  • 김민수;안효원;최재훈
    • 한국측량학회지
    • /
    • 제40권1호
    • /
    • pp.1-14
    • /
    • 2022
  • 굴착 현장에서 신속·정확·안전한 측량을 위해 본 연구에서는 드론을 이용한 지하 시설물 측량의 적용 가능성 및 3D 시각화의 기대효과를 다음과 같이 도출하였다. Phantom4 Pro 20MP의 드론으로 30m의 비행 고도, 중복도 85%의 비행계획으로 0.85mm의 GSD (Ground Sampling Distance)값을 확보하였고, GCP (Groud Control Point)4점과 검사점 2점을 계산하여 기준점에 대하여 7.3mm, 검사점은 11mm의 성과를 취득할 수 있었다. 저가의 드론으로 측량할 경우 GCP의 중요성이 확인되었으며, 지상 기준점이 없는 경우, X값의 오차 범위는 -81.2cm에서 +90.0cm, Y값의 오차 범위는 +6.8cm에서 155.9 cm 값을 도출하였다. Pix4D 프로그램을 이용하여 포인트 클라우드 데이터를 분류하였다. 지하 시설물 데이터와 도로 포장면의 데이터를 분류하고, 중첩과정을 통해 실제 모형의 도로와 지하 시설물의 데이터를 3D 시각화하였다. 중첩된 포인트 클라우드 데이터는 Open Source 프로그램인 CloudCompare를 통해 사용자가 원하는 장소의 위치와 심도 정보를 확인할 수 있게 되었다. 본 연구결과로 지하 시설물 측량의 새로운 패러다임으로 자리매김하게 될 것이다.

부분구조추정법을 이용한 대형구조물의 효율적인 구조안전도 모니터링 (Efficient Structral Safety Monitoring of Large Structures Using Substructural Identification)

  • 윤정방;이형진
    • 한국지진공학회논문집
    • /
    • 제1권2호
    • /
    • pp.1-15
    • /
    • 1997
  • 본 논문에서는 대형구조물에서 구조물의 안전성 평가와 관련하여 구조물이 국부손상도를 추정하기 위한 효율적인 부분구조추정(Substructural Identification) 기법에 대하여 연구하였다. 먼저, 부분구조 추정법을 위한 모형식을 설정하기 위하여 운동방정식으로부터 부분구조에 대한 계측오차를 처리하기 위한 모형을 포함한 추계론적 자동회귀-이동평균(ARAMX) 모형식을 유도하였다. 추정된 모형식의 계수는 유도된 관계식을 이용하면, 구조손상 평가에 이용될 수 있는 강성행렬로 환산될 수 있다. 본 논문에서 유도된 부분구조 추정법의 가장 큰 장점은 매우 안정되고 정확도가 우수한 구조추정법인 ARMAX 모형식에 기반한 순차적 예측오차 방법을 사용함으로써 다른 방법에 비해 추정의 안정성 및 정확도가 뛰어나다는 것이다. 다음으로는 개발된 부분구조 추정법을 이용하여 구조 손상도 추정이 수행되었다. 손상도 추정을 위하여 앞서 순차적 예측오차 방법을 이용하여 추정된 구조계 현상태의 강성행렬을 바탕으로, 최소지승법을 이용하여 구하는 간접법이 제시되었다. 제시된 방법들의 검증을 위하여 예제해석이 수행되었다. 트러스 및 연속교 모형 그리고 실험적 예제에 적용하여 구조의 강성행렬 및 감쇠행렬을 추정하였다. 이를 바탕으로 손상도 추정방법이 검증되었다. 해석결과로부터, 개발된 방법이 효율적이고 정확도 및 안정성의 측면에서 우수한 성질이 있음을 확인할 수 있다.

  • PDF