• Title/Summary/Keyword: Process oil

Search Result 1,708, Processing Time 0.031 seconds

Benzo(a)pyrene Reduction in Sesame Oil Using Microwaving Method (Microwaving을 이용한 참기름의 Benzo(a)pyrene 저감화)

  • Oh, Sung-Cheon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.323-329
    • /
    • 2012
  • Sesame oil has superior oxidation stability and unique roasting flavor. Accordingly, this has been used for edible oil as well as a seasoning material for a long time in Korea. But sesame oil is a simple pressed oil, unrefined. During manufacturing process of roasting-expression, benzo(a)pyrene[B(a)P] formed as a strong carcinogenic substance causes a social problem. Detection of B(a)P in sesame oil was due to residual content in raw-sesame seeds and formation in roasting-expressing process. Especially, maximal forming process was roasting. Accordingly, in this study applied the traditional roasting method by roaster and microwaving method as a new type. Best roasting time by microwaving was for 5~10 min, B(a)P content in sesame oil was 0.53~0.79 ${\mu}g/kg$. These B(a)P contents showed 1/2 level than direct roasting method by roaster. As a result, B(a)P contents in sesame oil appeared the difference of more than 2 times according to roasting condition of sesame seed. For minimizing of B(a)P content in sesame oil is demanded roasting of sesame by microwaving than direct roasting by roaster.

Assessment Module Formulation for the Trapped-Oil Recovery Operations from Sunken Vessels (침몰선 잔존유 회수작업 평가모듈 개발에 관한 연구)

  • Kang, Kwang-gu;Lee, Eun-bang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.1
    • /
    • pp.88-96
    • /
    • 2021
  • When oil tankers, large passenger ships and cargo ships sink under the sea owing to various maritime accidents, the residual cargo oil or fuel oil in the such vessels could pose direct risk to factor for the marine environment and it require safe and rapid removal. Although domestic and foreign salvage companies are adopting various recovery methods and technologies with customizations according to each site during recovery operations studies on reasonable assessment modules for the operation process are relatively insufficient. In this study, the data from trapped-oil recovery operations performed at different site conditions were collected and analyzed in order to designed an operation assessment module, define the operational process steps in terms of preparation, implementation and completion, and derive key factors for each detailed process. Subsequently, the module was designed in such a way as to construct performance indicators to assess these key factors. In order to exclude subjective opinions from the assessment as much as possible, the assessment each item was constructed with indicators based on data that could be evaluated quantitatively and its usefulness was verified by applying the module to the trapped-oil recovery operation cases. We expect this the method and the technology assessment module for the trapped-oil recovery operation on sunken vessels will help to verify the adequacy of the trapped-oil recovery such operation before or after. Furthermore, it is expected that the continuous accumulation of assessment data and feedback from past or future operation cases will contribute toward enhancing the overall safety, efficiency and field applicability of trapped-oil recovery operation.

Construction of an Oil Pump Rotor Production Line with High Productivity

  • Akiyama, Kazunari
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1278-1279
    • /
    • 2006
  • New product line with additional secondary operation of oil pump rotor was built in necessity of increasing capacity. This new line includes steam treatment process after sizing. The new line achieved 1.6 times higher performance compared with a conventional line.

  • PDF

Elimination of Saturated Fatty Acids, Toxic Cyclic nonapeptide and Cyanogen Glycoside Components from Flax Seed Oil

  • Choi, Eun-Mi;Kim, Jeung-Won;Pyo, Mi-Kyung;Jo, Sung-Jun;Han, Byung-Hoon
    • Biomolecules & Therapeutics
    • /
    • v.15 no.1
    • /
    • pp.65-72
    • /
    • 2007
  • Flax seed(Linseed, Linum usitatissimum L.) and its oil, a richest source of alpha-linolenic acid(ALA)(${\omega}-3$), contain saturated fatty acids, neurotoxic cyanogen glycosides and immuno-suppressive cyclic-nonapeptides. Present paper describes the development of two chemical processes, Process-A and -B, to remove saturated fatty acids and to destroy cyclic nonapeptides and cyanogen glycosides from flax seed oil. Process-A consists of three major steps, i.e., extraction of fatty acid mixture by alkaline saponification, removal of saturated fatty acid by urea-complexation, and triglyceride reconstruction of unsaturated fatty acid via fatty acyl-chloride activation using oxalyl chloride. Process-B consists of preparation of fatty acid ethyl ester by transesterification, elimination of saturated fatty acid ester by urea-complexation, and reconstruction of triglyceride by interesterification with glycerol-triacetate (triacetin). The destruction of lipophilic cyclic nonapeptide during saponification or transesterification processes could be demonstrated indirectly by the disappearance of antibacterial activity of bacitracin, an analogous cyclic-decapeptide. The cyanogen glycosides were found only in the dregs after hexane extraction, but not in the flax seed oil. The reconstructed triglyceride of flax seed oil, obtained by these two different pathways after elimination of saturated fatty acid and toxic components, showed agreeable properties as edible oil in terms of taste, acid value, iodine and peroxide value, glycerine content, and antioxidant activity.

Optimization of Cooling Conditions by Supplying Cutting Oil Applied with Mist Nozzle to Minimize Tapping Processing Temperature (Tapping 가공 온도 최소화를 위해 미스트 노즐 적용 절삭유 공급에 따른 냉각조건 최적화)

  • Oh, Chang-hyouk;Kim, Young-Shin;Jeon, Euy-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.5
    • /
    • pp.98-104
    • /
    • 2022
  • When processing parts, the cutting oil can improve the cooling performance of the workpiece and tool to increase the precision of the workpiece or extend the life of the tool and facilitate chip extraction. Since such cutting oil has a harmful effect on the environment and the human body due to additives such as sulfur, research on a minimum lubrication supply method using an eco-friendly oil is recently underway. The minimum lubrication supply method minimizes the amount of cutting oil used during processing and processes it, which can reduce the amount of cutting oil used, but has a problem in that cooling performance efficiency is poor. Therefore, this study conducted a study on mist cooling of lubricants to reduce the amount of cutting oil used and maximize the cooling effect of processing heat generated during tapping processing. Spray pressure, processing speed, direction, and lubricant spray amount, which are considered to have an effect on cooling performance, were set as process conditions, and the effect on temperature was analyzed by performing an experiment using the box benquin method among experiments were analyzed. Through the experimental analysis results, the optimal conditions for mist and processing that maximize the cooling effect were derived, and the validity of the results derived through additional experiments was verified. In the case of processing by applying the mist lubrication method verified through this study, it is considered that high-precision processing is possible by improving the cooling effect.

Grease Life and Degradation Characteristics in Rolling Bearing Lubrication (특성별 그리이스의 수명과 열화특성 연구)

  • 김상근;박창남;한종대
    • Tribology and Lubricants
    • /
    • v.19 no.5
    • /
    • pp.280-284
    • /
    • 2003
  • High performance characteristics are required for rolling bearings and the various functions of bearing are greatly influenced by grease. Recently, higher performance is being demanded of rolling bearing greases for bearing lubrication. Four special greases with different composition such as lithium soap/ester oil, urea/ester oil, urea/ether oil and PTFE/fluorine oil were synthesized to compare the performance of these greases with that of the conventional lithium soap/mineral oil grease. The grease properties were investigated using a series of typical grease testing methods and grease life test. After the life test, the greases were charaterized by FTIR analysis and a microscope. And the iron amount in the greases was analyzed by AAS after ashing. The composition and manufacturing process determined the grease performance. The grease with a base oil of synthetic oil showed higher performance and the urea/ester oil and PTFE/fluorine oil showed about three times longer life as compared with conventional lithium grease.

Grease Life and Degradation Characteristics in Rolling Bearing Lubrication (특성별 그리이스의 수명과 열화특성 연구)

  • 김상근;박창남;한종대
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.179-185
    • /
    • 2001
  • High performance characteristics are required for rolling bearings and the various functions of bearing are greatly influenced by grease. Recently, higher performance is being demanded of rolling bearing greases for bearing lubrication. Four special greases with different composition such as lithium soap/ester oil, urea/ester oil, urea/ether oil and PTFE/fluorine oil were synthesized to compare the performance of these greases with that of the conventional lithium soap/mineral oil grease. The grease properties were investigated using a series of typical grease testing methods and grease life test. After the life test, the greases were charaterized by FTIR analysis and a microscope. And the iron amount in the greases was analyzed by AAS after ashing. The composition and manufacturing process determined the grease performance. The grease with a base oil of synthetic oil showed higher performance and the urea/ester oil and PTFE/fluorine oil showed about three times longer life as compared with conventional lithium grease.

  • PDF

An oil-tolerant and salt-resistant aqueous foam system for heavy oil transportation

  • Sun, Jie;Jing, Jiaqiang;Brauner, Neima;Han, Li;Ullmann, Amos
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.99-108
    • /
    • 2018
  • An oil-tolerant and salt-resistant aqueous foam system was screened out as a possible lubricant to enable cold heavy oil transportation. The microstructures and viscoelasticity and effects of heavy oil, salt and temperature on the foam stability were investigated and new rheological and drainage models were established. The results indicate the foam with multilayered shells belongs to a special microcellular foam. The viscoelasticity could be neglected due to its low relaxation time. The drainage process can be divided into three stages. The foam with quality of 67.9% maintains great stability at high oil and salt concentrations and appropriate elevated temperature.

Analysis of Produced By-products Due to Oil/Paper Degradation on Power Transformers (전력용 변압기의 열화에 의해 생성된 부산물의 분석)

  • Kim, Jae-Hoon;Han, Sang-Ok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.9
    • /
    • pp.1561-1565
    • /
    • 2007
  • According to thermal degradation on power transformers, it is known that electrical, mechanical and chemical characteristics for power transformer's oil-paper are changed. In the chemical property, especially, when the kraft paper is aged, the cellulose polymer chains break down into shorter lengths. It causes decrease in both tensile strength and degree of polymerization of paper insulation. Also the paper breakdown is accompanied by an increase in the content of various furanic compounds within the dielectric liquid. It is known that furanic components in transformer oil come only from the decomposition of insulating paper rather than from the oil itself. Therefore the analysis of furanic degradation products provides a complementary technique to dissolved gas analysis for monitoring transformers when we evaluate the aging of insulating paper by the total concentration of carbon monoxide and carbon dioxide dissolved in oil only. Recently, the analysis of furanic compounds by high performance liquid chromatography(HPLC) using IEC 61198 method for estimating degradation of paper insulation in power transformers has been used more conveniently for assessment of oil-paper. It is know that the main products which is produced by aging are 2-furfuryl alcohol, 2-furaldehyde(furfural), 2-furoic acid, 2-acetylfuran, 5-methyl-2-furaldehyde, and 5-hydroxymethyl-2-furaldehyde. For investigating the accelerated aging process of oil-paper samples we manufactured accelerating aging equipment and we estimated variation of insulations at $140^{\circ}C$ temp. during 500 hours. Typical transformer proportions of copper, silicon steel and iron have been added to oil-paper insulation during the aging process. The oil-paper insulation samples have been measured at intervals of 100 hours. Finally we have analyzed that 2-furoic acid and 2-acetylfuran products of furanic compounds were detected by HPLC, and their concentrations were increased with accelerated aging time.