• 제목/요약/키워드: Process oil

검색결과 1,707건 처리시간 0.024초

유류오염 토양의 복원을 위한 열탈착 처리기술

  • 유동준;김영웅;박용규;오방일;구자공
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2001년도 추계학술발표회
    • /
    • pp.111-114
    • /
    • 2001
  • Thermal desorption process is valuable for the remediation of oil contaminated site. The system is physical separation process by volatizing oil contaminants from soil matrixes and is not designed to provide high levels of oil destruction. The process is not incineration, because the decomposition of oil materials is not the desired result, although some decomposition may occur. The physical and chemical properties that influence the design and operation of the system include boiling points, soil sorption characteristics, aqueous phase solubility, thermal stability, contaminating oil concentration, moisture contents, particle size distribution and etc.

  • PDF

산초유 정제공정에 따른 물리화학적 변화 (Changes in the Physicochemical Characteristics of Sancho Oil according to the Purification Process)

  • 강승미;김학곤;양우형;용성현;박동진;박준호;;최명석
    • 한국약용작물학회지
    • /
    • 제25권5호
    • /
    • pp.296-304
    • /
    • 2017
  • Background: Sancho oil extracted from Zanthoxylum schinifolium (Siebold & Zucc) is a useful edible oil that has been in use for a long time, but it is known to be susceptible to rancidity. Sancho oil purification can remove impurities to prevent rancidity. This study was performed in order to improve the quality of sancho oil and enhance its availability throughout the purification process. Methods and Results: Sancho oil extracted in Hadong, Korea was refined via the degumming and deoxygenation processes, following which we examined the changes in the polyphenol content, fatty acid content and antioxidant activity of the oil. Acetic acid was effective for deoxygenation of sancho oil and 2 N NaOH was effective for its deoxidation. The polyphenol content and antioxidant activity were reduced by the purification process. Saturated fatty acids contents did not vary with the degumming and deoxygenation processes, however the content of unsaturated fatty acids were slightly reduced. Conclusions: This study suggests that the process of sancho oil purification used in this study will contribute to the increased use and storage of sancho oil.

세라믹 정밀/한외여과 복합막을 이용한 폐윤활유 정제 (Reclamation of Waste Lubricating Oil Using Ceramic Micro/Ultrafiltration Composite Membrances)

  • 김계태;현상훈
    • 한국세라믹학회지
    • /
    • 제37권5호
    • /
    • pp.403-409
    • /
    • 2000
  • The permeation characteristics and reclamation efficiency of waste lubricating oil were studied as a function of the types of ceramic composite membranes and the membrane separation process variables. The oil permeability of the TiO2 composite membrane(pore size 0.015 $\mu\textrm{m}$) was directly proportional to the crossflow velocity(0.22∼0.9 m/s) and temperature(150$^{\circ}C$∼200$^{\circ}C$). In the batch concentration process, as the concentration factor increased, both the permeability and the ash content of the permeate decreased. The average ash contents of the total permeate through the A6 alumina membrane(average pore size 0.8$\mu\textrm{m}$), Z1/A6 and Z1/A4(pore size 0.23$\mu\textrm{m}$)/A7(pore size 6$\mu\textrm{m}$) zirconia composite membrances(average pore size 0.07$\mu\textrm{m}$) were about 0.063 wt%, 0.045wt% and 0.08wt% in the region of 1∼2 concentration factor, respectively. The ash content of the mixed permeate through the A6 alumina and zirconia composite membrane was about 0.06 wt% and it can be also reduced to 0.06 wt% in the Z1/A6 membrane and below 0.003 wt% in the TiO2/Z1/A6 membrane. It was concluded that the treated oil obtained from the multi-step membrane separation process could be used as reclaimed lubricating oil as well as reclained fuel oil.

  • PDF

해양플랜트 프로세스 배관 내경 플러싱 오일속에서 수분제거를 위한 실험적 품질 특성 (Experimental Quality Characteristics for Water Removal in Inner Flushing Oil in Process Piping of Offshore Plant)

  • 박창수;성기영;한성종
    • 한국산업융합학회 논문집
    • /
    • 제22권6호
    • /
    • pp.797-805
    • /
    • 2019
  • An important problem of offshore plant process piping is equipment accidents due to the removal of fine metal debris and foreign substances in the pipes that deliver fluids such as hydraulic oil, lubricating oil and thermal oil. Temporary flushing equipment to remove debris uses fluid equipment of centrifugal pump and gear pump to prevent equipment accident of offshore platform. The equipment manufacturer requires the shipyard to have a cleanliness rating inside the pipe to meet the international standards ISO4406 and NAS1638 quality levels to prevent damage to the equipment sold. The quality of the internal flushing of pipes conforms to the regulations suggested by the equipment manufacturer. In this paper, three types of electric heater capacity, which is a method of evaporating and removing water inside a pipe during an oil flushing process, were compared. In addition, the study was conducted to remove the flushing oil in the pipe and to improve oil quality.

폴리에틸렌/육티탄산칼륨 휘스커 복합재료에 의한 축전지격리막의 제조에 관한 연구 (A Study on the Preparation of Battery Separator for Polyethylene/Potassium Hexatitanate Whisker)

  • 이완진;고만석;최병렬;조일훈
    • 공업화학
    • /
    • 제9권2호
    • /
    • pp.193-199
    • /
    • 1998
  • 초고분자량폴리에틸렌(UHMWPE), 고밀도폴리에틸렌(HDPE), process oil(mineral oil) 및 육티탄산칼륨 섬유로 구성되는 입자혼합물을 $150^{\circ}C$에서 30분 동안 용융 혼합하고, 동일온도 및 5000 psi 조건으로 압축성형을 하여 $200{\mu}m$ 두께의 격리막 시험편을 제조한 후, process oil을 유기용매로 추출하여 PE층 사이에 미세공을 형성시켰다. 본 실험에서 시험편은 고분자와 process oil의 비율(PR)이 0.1 이하에서는 고무상이 되고 0.5 이상에서는 gel상으로 변하기 때문에, PR의 범위를 0.1-0.5 사이로 하였다. 시험편은 비극성 유기용매로 추출한 경우 거의 98%의 process oil이 추출되었으며, PR이 증가함에 따라 무게감소율은 감소하였다. 인장강도는 PR이 0.426인 경우 $31kg/cm^2$을 보였으며, 전해전기저항 값은 PR이 0.186 및 0.426에서 $37m{\Omega}/cm^2$$53m{\Omega}/cm^2$이었다. 질소 흡-탈착법에 의한 등온선은 모세관 응축영역을 나타내는 hysteresis를 가졌으며, PR=0.186인 경우 $130m^2/g$의 비교적 큰 표면적을 나타내었다. 이는 SEM의 분석 결과와 마찬가지로 PE배향층 사이에 육티탄산칼륨 섬유가 무작위로 잘 분산되었음을 보여주는 결과이며, host인 PE층 사이에 guest인 육티탄산칼륨 섬유가 층간되어 층상공을 형성한다고 추론할 수 있다.

  • PDF

The Study of Simulation Exercise System of Marine Oil Spill Crisis Response Based on GIS

  • Yancheng, Liu;Peihai, Yin;Dianli, Zhao;Caiqin, Sun
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2004년도 Asia Navigation Conference
    • /
    • pp.194-199
    • /
    • 2004
  • The paper does researches and analysis on the process of marine oil spill crisis response (MOSCR), and develops the marine oil spill crisis response simulation exercise system. The system developed by this paper is composed of four subsystems, including the training system of MOSCR, the geographical information system of MOSCR, the marine oil spill control and cleanup decision-making expert system, and the computer simulation exercise system. The paper builds up the applied model system of MOSCR. The system takes the marine oil spill crisis response geographical information system as the platform, which integrates all aspects of MOSCR. This system can offer an oil spill scene to the trainees and simulate the whole process of MOSCR on the interface of GIS.

  • PDF

간접가열 유화설비에 의한 폐멀칭비닐의 연료유 특성 (Fuel Oil Characteristics of Mulching Waste Vinyl by Indirect Heating Emulsion System)

  • 김해지;김남경
    • 한국기계가공학회지
    • /
    • 제8권1호
    • /
    • pp.37-42
    • /
    • 2009
  • This paper describes the fuel oil characteristics of mulching waste vinyl by indirect heating emulsion system. For the emulsion experiment of waste vinyl, the system is composed of melting furnace, the 1th pyrolysis furnace, and the 2nd pyrolysis furnace. The mulching waste vinyl is used for the fuel oil characteristics analysis of mulching waste vinyl. The refined oil, gasoline, and diesel oil are extracted and quantified to analysis the fuel oil characteristics. From the results of experiments, it has been shown that the production of fuel oil from mulching waste vinyl is possible using the emulsion system.

  • PDF

가공공정에 따른 참기름 휘발성 향기성분의 변화 (Changes of Volatile Flavor Compounds in Sesame Oils during Industrial Process)

  • 김현위;최춘언;우순자
    • 한국식품과학회지
    • /
    • 제30권4호
    • /
    • pp.739-744
    • /
    • 1998
  • 볶음장치(로타리킬른)를 사용하여 참깨볶음온도 $225{\pm}2^{\circ}C$, 볶음시간 15분으로 볶아서 나온 참깨를 착유하여 얻은 기름을 1차압착유, 1차착유하고 남은 참깨박을 재착유하여 얻은 기름을 2차압착유, 1차압착유와 2차압착유를 혼합해서 여과한 참기름을 1차여과유, 1차여과유의 침전물을 제거하기 위해서 정치시켜서 얻은 정치유, 정치유를 여과해서 얻은 참기름을 2차여과유로 구분하여 이들의 공정에 따른 참기름 향의 변화를 실험하였다. 전체향기성분량은 1차압착유 536.3 ppm, 2차압착유 266.8 ppm, 1차여과유 472.2 ppm, 정치유 472.4 ppm, 2차여과유 443.0 ppm으로 가공공정이 진행됨에 따라 점차 감소하였으며, 특히 1차압착하고 남은 참깨박을 재착유할 경우 2차압착유에는 약 50%의 향기성분만이 잔존하여 향성분의 손실이 크게 증가하였다. 특히 관능적으로 중요한 top note감소(초기함량치 70.67% 감소)가 현저함을 알수 있었으며, 그 중에서도 pyrazines의 손실이 초기함량의 66.9%로 가장 현저하였다.

  • PDF

2D 유한요소해석을 이용한 트랜스미션 오일 씰 설계에 관한 연구 (A Study on the Design of Transmission Oil-Seal Using 2D Finite Element Analysis)

  • 윤현철;전기현;최주용
    • 한국기계가공학회지
    • /
    • 제18권1호
    • /
    • pp.85-93
    • /
    • 2019
  • Oil seals are most essential parts in mechanical lubrication system to maintain the close gaps between stationary and high rotating components, and to help prevent oil leakages. Oil seals also can prevent harmful contaminants entering from outside to machinery, especially in severe environments. Therefore, the oil seals have an important performance in the machinery components. The performance of the oil seals are influenced by the design variables such as amount of interference gap between the main lip and shaft, the angle of main lip at air and oil sides and the distance between the garter spring and main lip. In the present study, a finite element analysis was performed to evaluate the oil seal performance with the considerations of number of oil seal dust lips and angle of the lip at oil side with the different design variables. As a result from the FEM analysis, the stress and contact pressure distributions was derived, based on this, performance of the sealing and durability were determined.

Biological Upgrading of Heavy Crude Oil

  • Leon, Vladimir;Kumar, Manoj
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제10권6호
    • /
    • pp.471-481
    • /
    • 2005
  • Heavy crudes (bitumen) are extremely viscous and contain high concentrations of asphaltene, resins, nitrogen and sulfur containing heteroaromatics and several metals, particularly nickel and vanadium. These properties of heavy crude oil present serious operational problems in heavy oil production and downstream processing. There are vast deposits of heavy crude oils in many parts of the world. In fact, these reserves are estimated at more than seven times the known remaining reserves of conventional crude oils. It has been proven that reserves of conventional crude oil are being depleted, thus there is a growing interest in the utilization of these vast resources of unconventional oils to produce refined fuels and petrochemicals by upgrading. Presently, the methods used for reducing viscosity and upgradation is cost intensive, less selective and environmentally reactive. Biological processing of heavy crudes may provide an ecofriendly alternative or complementary process with less severe process conditions and higher selectivity to specific reactions to upgrade heavy crude oil. This review describes the prospects and strengths of biological processes for upgrading of heavy crude oil.