• 제목/요약/키워드: Process network

검색결과 6,611건 처리시간 0.03초

개선된 스케일 스페이스 필터링과 함수연결연상 신경망을 이용한 화학공정 감시 (Monitoring of Chemical Processes Using Modified Scale Space Filtering and Functional-Link-Associative Neural Network)

  • 최중환;김윤식;장태석;윤인섭
    • 제어로봇시스템학회논문지
    • /
    • 제6권12호
    • /
    • pp.1113-1119
    • /
    • 2000
  • To operate a process plant safely and economically, process monitoring is very important. Process monitoring is the task to identify the state of the system from sensor data. Process monitoring includes data acquisition, regulatory control, data reconciliation, fault detection, etc. This research focuses on the data recon-ciliation using scale-space filtering and fault detection using functional-link associative neural networks. Scale-space filtering is a multi-resolution signal analysis method. Scale-space filtering can extract highest frequency factors(noise) effectively. But scale-space filtering has too large calculation costs and end effect problems. This research reduces the calculation cost of scale-space filtering by applying the minimum limit to the gaussian kernel. And the end-effect that occurs at the end of the signal of the scale-space filtering is overcome by using extrapolation related with the clustering change detection method. Nonlinear principal component analysis methods using neural network have been reviewed and the separately expanded functional-link associative neural network is proposed for chemical process monitoring. The separately expanded functional-link associative neural network has better learning capabilities, generalization abilities and short learning time than the exiting-neural networks. Separately expanded functional-link associative neural network can express a statistical model similar to real process by expanding the input data separately. Combining the proposed methods-modified scale-space filtering and fault detection method using the separately expanded functional-link associative neural network-a process monitoring system is proposed in this research. the usefulness of the proposed method is proven by its application a boiler water supply unit.

  • PDF

신경회로망을 이용한 RF 스퍼터링 ZnO 박막 증착 프로세스 모델링 (Modeling of RF Sputtering Process for ZnO Thin film Deposition using Neural Network)

  • 임근영;이상극;박춘배
    • 한국전기전자재료학회논문지
    • /
    • 제19권7호
    • /
    • pp.624-630
    • /
    • 2006
  • ZnO deposition parameters are not independent and have a nonlinear and complex property. To propose a method that could verify and predict the relations of process variables, neural network was used. At first, ZnO thin films were deposited by using RF magnetron sputtering process with various conditions. Si, GaAs, and Glass were used as substrates. The temperature, work pressure, and RF power of the substrate were $50\sim500^{\circ}C$, 15 mTorr, and $180\sim210W$, respectively : the purity of the target was ZnO 4 N. Structural properties of ZnO thin films were estimated by using XRD (0002) peak intensity. The structure of neural network was a form of 4-7-1 that have one hidden layer. In training a network, learning rate and momentum were selected as 0.2, 0.6 respectively. A backpropagation neural network were performed with XRD (0002) peak data. After training a network, the temperature of substrate was evaluated as the most important parameter by sensitivity analysis and response surface. As a result, neural network could capture nonlinear and complex relationships between process parameters and predict structural properties of ZnO thin films with a limited set of experiments.

퍼지 및 신경망을 이용한 Blending Process의 최적화 (Blending Precess Optimization using Fuzzy Set Theory an Neural Networks)

  • 황인창;김정남;주관정
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1993년도 추계학술대회 논문집
    • /
    • pp.488-492
    • /
    • 1993
  • This paper proposes a new approach to the optimization method of a blending process with neural network. The method is based on the error backpropagation learning algorithm for neural network. Since the neural network can model an arbitrary nonlinear mapping, it is used as a system solver. A fuzzy membership function is used in parallel with the neural network to minimize the difference between measurement value and input value of neural network. As a result, we can guarantee the reliability and stability of blending process by the help of neural network and fuzzy membership function.

  • PDF

네트워크기술의 발달과 기업의 대응방안

  • 유상진;김기주;이충권
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제7권1호
    • /
    • pp.5-21
    • /
    • 1998
  • The speedy advance of network technology with axis internet gives the business opportunities to the today's firms and also makes them apply the intranet and groupware to their management. And, the firms admit these technological changes and expand the investment on the network. But, the firm's plans to cope with the changes which is caused by the appliance of the network technology to their firms are not prepared yet. Especially, the firm's managers are particularly wondering on how to use the already invested network hardware. In this article, we investigated the advance process and direction of the network technology like internet, groupware, and intranet, the firm's efforts to build network system, and the changes of the business process procedures. To apply the new technologies such as intranet and groupware into the business, the firms have to change the function of computer center from the programming to the user training and the management of network and computing resources, and they need to standardize their business process.

  • PDF

Network Security Situation Assessment Method Based on Markov Game Model

  • Li, Xi;Lu, Yu;Liu, Sen;Nie, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권5호
    • /
    • pp.2414-2428
    • /
    • 2018
  • In order to solve the problem that the current network security situation assessment methods just focus on the attack behaviors, this paper proposes a kind of network security situation assessment method based on Markov Decision Process and Game theory. The method takes the Markov Game model as the core, and uses the 4 levels data fusion to realize the evaluation of the network security situation. In this process, the Nash equilibrium point of the game is used to determine the impact on the network security. Experiments show that the results of this method are basically consistent with the expert evaluation data. As the method takes full account of the interaction between the attackers and defenders, it is closer to reality, and can accurately assess network security situation.

Business Collaborative System Based on Social Network Using MOXMDR-DAI+

  • Lee, Jong-Sub;Moon, Seok-Jae
    • International Journal of Advanced Culture Technology
    • /
    • 제8권3호
    • /
    • pp.223-230
    • /
    • 2020
  • Companies have made an investment of cost and time to optimize processing of a new business model in a cloud environment, applying collaboration technology utilizing business processes in a social network. The collaborative processing method changed from traditional BPM to the cloud and a mobile cloud environment. We proposed a collaborative system for operating processes in social networks using MOXMDR-DAI+ (eXtended Metadata Registry-Data Access & Integration based multimedia ontology). The system operating cloud-based collaborative processes in application of MOXMDR-DAI+, which was suitable for data interoperation. MOXMDR-DAI+ applied to this system was an agent effectively supporting access and integration between multimedia content metadata schema and instance, which were necessary for data interoperation, of individual local system in the cloud environment, operating collaborative processes in the social network. In operating the social network-based collaborative processes, there occurred heterogeneousness such as schema structure and semantic collision due to queries in the processes and unit conversion between instances. It aimed to solve the occurrence of heterogeneousness in the process of metadata mapping using MOXMDR-DAI+ in the system. The system proposed in this study can visualize business processes. And it makes it easier to operate the collaboration process through mobile support. Real-time status monitoring of the operation process is possible through the dashboard, and it is possible to perform a collaborative process through expert search using a community in a social network environment.

표면 비드높이 예측을 위한 최적의 신경회로망 선정에 관한 연구 (A Study on the Selection of Optimal Neural Network for the Prediction of Top Bead Height)

  • 손준식;김인주;김일수;장경천;이동길
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.66-70
    • /
    • 2005
  • The full automation of welding has not yet been achieved partly because the mathematical model for the process parameters of a given welding task is not fully understood and quantified. Several mathematical models to control welding quality, productivity, microstructure and weld properties in arc welding processes have been studied. However, it is not an easy task to apply them to the various practical situations because the relationship between the process parameters and the bead geometry is non-linear and also they are usually dependent on the specific experimental results. Practically, it is difficult, but important to know how to establish a mathematical model that can predict the result of the actual welding process and how to select the optimum welding condition under a certain constraint. In this paper, an attempt has been made to develop an neural network model to predict the weld top-bead height as a function of key process parameters in the welding. and to compare the developed model and a simple neural network model using two different training algorithms in order to select an optimal neural network model.

  • PDF

보정신경망을 이용한 냉연 압하력 적중율 향상 (Improvement of roll force precalculation accuracy in cold mill using a corrective neural network)

  • 이종영;조형석;조성준;조용중;윤성철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1083-1086
    • /
    • 1996
  • Cold rolling mill process in steel works uses stands of rolls to flatten a strip to a desired thickness. At cold rolling mill process, precalculation determines the mill settings before a strip actually enters the mill and is done by an outdated mathematical model. A corrective neural network model is proposed to improve the accuracy of the roll force prediction. Additional variables to be fed to the network include the chemical composition of the coil, its coiling temperature and the aggregated amount of processed strips of each roll. The network was trained using a standard backpropagation with 4,944 process data collected from no.1 cold rolling mill process from March 1995 through December 1995, then was tested on the unseen 1,586 data from Jan 1996 through April 1996. The combined model reduced the prediction error by 32.8% on average.

  • PDF

레이저 표면경화공정에서 신경회로망을 이용한 경화층깊이 추정 (Estimation of Hardened Depth in Laser Surface Hardening Processes Using Neural Networks)

  • 박영준;조형석;한유희
    • 대한기계학회논문집
    • /
    • 제19권8호
    • /
    • pp.1907-1914
    • /
    • 1995
  • An on-line measurement of the workpiece hardened depth in laser surface hardening processes is very much difficult to achieve, since the hardening process occurs in depth wise direction. In this paper, the hardened depth is estimated using a multilayered neural network. Input data of the neural network are the surface temperatures at arbitrary chosen five surface points, laser power and traveling speed of laser beam torch. To simulate the actual hardening process, a finite difference method(FDM) is used to model the process. Since this model yields the calculation results of the temperature distribution around the workpiece volume in the vicinity of the laser torch, this model is used to obtain the network's training data and laser to evaluate the performance of the neural network estimator. The simulation results show that the proposed scheme can be used to estimate the hardened depth with reasonable accuracy.

Modular 신경 회로망을 이용한 GMA 용접 프로세스 모델링 (A Modular Neural Network for The GMA Welding Process Modelling)

  • 김경민;강종수;박중조;송명현;배영철;정양희
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2001년도 춘계종합학술대회
    • /
    • pp.369-373
    • /
    • 2001
  • In this paper, we proposes the steps adopted to construct the neural network model for GMAW welds. Conventional, automated process generally involves sophisticated sensing and control techniques applied to various processing parameters. Welding parameters are influenced by numerous factors, such as welding current, arc voltage, torch travel speed, electrode condition and shielding gas type and flow rate etc. In traditional work, the structural mathematical models have been used to represent this relationship. Contrary to the traditional model method, neural network models are based on non-parametric modeling techniques. For the welding process modeling, the non-linearity at well as the coupled input characteristics makes it apparent that the neural network is probably the most suitable candidate for this task. Finally, a suitable proposal to improve the construction of the model has also been presented in the paper.

  • PDF