• Title/Summary/Keyword: Process and Die Design

Search Result 945, Processing Time 0.028 seconds

Die stress and Process of Analysis for Condenser Tube Extrusion by using a Porthole Die (포트홀 다이를 이용한 컨덴서 튜브 직접압출 공정해석 및 금형강도 해석)

  • Lee, J. M.;lee, S. K.;Kim, B. M.;Jo, H. H.;Jo, H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1030-1033
    • /
    • 2002
  • In this study, it is important that we have an understanding of the metal flow for manufacturing condenser tube in porthole die extrusion, because this need to provide for household appliances market that is expected to grow into the major market of the cooling system hereafter. Condenser tube is mainly manufactured by conform exclusion. However, this method was not satisfied a series of the needs for manufacturing condenser tube as compared with porthole die extrusion. The deforming skill recently is required high-productivity, high-accuracy and reducing lead-time, thus it is essential to substitute conform exclusion by porthole die exclusion. Porthole die extrusion has many advantages such as improvement of productivity, reduction of production cost etc. In general, the porthole die extrusion process consists of three stages(dividing, welding and forming stages). In order to obtain the detailed mechanics, to assist in the design of proper die shapes and sizes, and to improve the quality of products, porthole die extrusion should be analyzed in as non-steady state as possible during the entire process to evaluate detailed metal flow, temperature distribution, welding pressure and extrusion lead, and therm stress analysis was practiced to obtain effective stress and elastic deformation value. A analytical results provide useful information the optimal design of the porthole die for condenser tube.

  • PDF

Design and Development of the Simulated Die casting Process by using Rapid Prototyping (쾌속조형을 이용한 다이 캐스팅 제품의 시작 공정 설계 및 제작)

  • Kim, Ki-Don;Yang, Dong-Yol;Jeong, Jun-Ho;Park, Tae-Kwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.7
    • /
    • pp.167-173
    • /
    • 2001
  • The simulated die-casting process in which the traditional plaster casting process is combined with Rapid Prototyping technology is being used to produce AI, Mg, and Zn die-casting prototypes. Unlike in the die-casting process, molten metal in the conventional plaster casting process is fed via a gravity pour into a mold and the mold does not cool as quickly as a die-casting mold. The plaster castings have much larger and grosser grain structure as compared with the normal die-castings and the thin walls of the plaster mold cavity may not be completely filled. Because of lower mechanical properties induced by the large grain structure and incomplete filling, the conventional plaster casting process is not suitable for the trial die-casting process to obtain quality prototypes. In this work, an enhanced trial die-casting process has been developed in which molten metal in the plaster mold cavity is vibrated and pressurized simultaneously. Patterns for the casting are made by Rapid Prototyping technologies and then plaster molds, which have a runner system, are made using these patterns. Pressurized vibration to imparted molten metal has made grain structure of castings much finer and improved fluidity of the molten enough to obtain complete filling at thin walls which may not be filled in the conventional plaster casting process..

  • PDF

Study on the Springback Reduction of Automotive Advanced High Strength Steel Panel (자동차 초고강도 강판 패널의 스프링백 저감에 관한 연구)

  • Kim, B.G.;Lee, I.S.;Keum, Y.T.
    • Transactions of Materials Processing
    • /
    • v.18 no.6
    • /
    • pp.488-493
    • /
    • 2009
  • The very big springback of advanced high strength steel(AHSS) sheets invokes undesired shape defects, which can be generally eliminated by die correction or process parameter control. The springback reduction by controlling the forming process parameters is easy for the application, but limited for the bulky achievement. In this study, the effective die correction method, which obtains the modification of tool shape from the relationship between die design variable and springback, is introduced and is applied to the TWB tool of automotive side rail to show the validity and usefulness. Among the die correction trials repeatedly performed, the first trial is carried out by correcting the tool shape to the opposite direction to the springbacks of several tool sections. Next trials are done by extrapolating the springbacks of among the original tool uncorrected and the tools corrected negative amounts of the springback and by finding tool shapes without springbacks. After the angle of side wall and radius of curvature of horizontal bottom floor are chosen as design variables in the tool design of side rail, the tool shape is corrected 3 times. The accuracy of final shape within the assembly limit of 1mm and the springback reduction of 75.8% compared to the uncorrected tool are achieved.

Design and Analysis of precision Forging Process by Utilizing Pneumatically Operated Enclosed Die Set (공압식 폐쇄다이세트 적용 정밀단조공정 설계 및 해석기술)

  • Lee, K.S.;Eom, D.H.;Kang, S.H.;Lee, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.382-386
    • /
    • 2009
  • This paper describes design and analysis techniques of cold forging process for precise producing of T-200 type spider made of SCr420H by utilizing pneumatically operated enclosed die set. Since deducing feasible closing force is an important factor to optimize entire pneumatically operated cold forging system, a series of FE analyses with varying the number of gas cylinders has been carried out to investigate the influence of closing force upon the direction of applied load at die surfaces. It also reveals the optimum distribution of the gas cylinders in terms of the flatness of upper/lower plates.

  • PDF

A Study on the Relation between Bead Shape and Welding Parameters of GMA Welding far Die Remodeling (금형수정 GMA 용접에 있어서 용접조건과 비드 형상과의 상관관계에 관한 연구)

  • 김지태;나석주;김덕환;서만석
    • Journal of Welding and Joining
    • /
    • v.20 no.3
    • /
    • pp.60-66
    • /
    • 2002
  • Almost every die fur automobiles must be corrected or remodeled for minor geometrical changes or for better hardness characteristics by arc welding process. Although many other kinds of arc welding processes have been automated with robots, this molten metal deposition process for die remodeling still depend entirely on experienced welders. In this study, the database for bead shapes with respect to welding parameters are constructed by experiments to automate the molten metal deposition by arc welding process. And the changes of welding parameters for inclined base metal are studied to consider the effect of die geometries fur the welding process.

A Study on the Development of CAD/CAM System for Deep Drawing Transfer Die in Mechanical Press Process (기계식 프레스에서의 디프 드로잉 트랜스퍼 금형 자동설계 및 가공 시스템에 관한 연구)

  • 박상봉
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1146-1149
    • /
    • 1995
  • The CAD/CAM System for deep drawing transfer die in mechanical press proess has been developed. The developed CAD system can generate the drawing of drawing of transfer die in mechanical press. Using these results from CAD system, it can generate the NC data to machine die's elements on the CAD system. This system can reduce design man-hours and human errors. In order to construct the system, it is used to automate the design process using knowledge base system. The developed system is based on the knowledge base system which is involved a lot of expert's technology in the practice filed. Using AutoLISP language under the AutoCAD system, CTK customer language of SmartCAM is used as the overall CAD/CAM environment. Results of this system will be provide effective aids to the designer and mannufacturer in this field.

  • PDF

Injection Molding Technology for Thin Wall Plastic Part - II. Side Gate Removal Technology Using Cold Press Cutting Process (초정밀 박육 플라스틱 제품 성형기술- II. 냉간 절단 공정 활용 사이드 게이트 제거기술)

  • Heo, Young-Moo;Shin, Kwang-Ho;Choi, Bok-Seok;Kwon, Oh-Keun
    • Design & Manufacturing
    • /
    • v.10 no.3
    • /
    • pp.1-7
    • /
    • 2016
  • In the semiconductor industry the memory and chip were developed to high density memory and high performance chip, so circuit design was also high integrated and the test bed was needed to be thin and fine pitch socket. LGA(Land Grid Array) IC socket with thin wall thickness was designed to satisfy this requirement. The LGA IC socket plastic part was manufacture by injection molding process, it was needed accuracy, stiffness and suit resin with high flowability. After injection molding process the side gates were needed to remove for further assembly process. ln this study, the cold press cutting process was applied to remove the gates. For design of punch and die, the cold press cutting analysis was implemented by$DEFORM-2D^{TM}$ ln consideration of the simulation results, an adequate punch and die was designed and made for the cutting unit. In order to verify the performance of cutting process, the roughness of cutting section of the part was measured and was satisfied in requirement.

An investigation of non-uniform metal flow during rectangular battery case using impact extrusion process (충격압출 공정을 이용한 직사각형 배터리 케이스 성형 시 불균일 금속 유동 발생 원인 고찰)

  • Lim, Jae-Hyuk;Kim, Yong-bae;Lee, Jong-sup
    • Design & Manufacturing
    • /
    • v.10 no.2
    • /
    • pp.24-28
    • /
    • 2016
  • In this study, relevant to impact extrusion process of the rectangular batter case for electric vehicles, numerical and experimental analyses were conducted to reduce the earring defects induced in the unevenness of metal flow. Since the earring is caused by the non-uniform metal flow induced in the friction and aspect ratio in the bottom section. As a way to reduce the earring, variable land die concept was applied. In order to analyze numerically the complex metal flow by using commercial finite element package, DEFORM 3D, impact extrusion process was simplified in upsetting mode at bottom section and extrusion mode at land section. The impact extrusion experiments were conducted to verify the assessment of process parameter for impact extrusion. As results, variable land die which has longer longitudinal section makes reduce earring defects. In addition, it was confirmed that the effect that slug shape like dog-bone also can reduce the earring. This study is expected to be able to present the useful design guidelines for manufacturing the battery case.

Die design for the cold forging spur gears

  • Kwon, Hyuk-Hong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.1
    • /
    • pp.120-126
    • /
    • 2002
  • The near net shape forging of gears offers significant technical and economic advantages ever other forms of manufacture. These potential benefits can however only be realized by careful die design. This paper describes a computer-based methodology fur achieving this. A Visual-BASIC program has been developed on a rule based system that enables optimal design of the dies taking into account the elastic deflections generated in shrink-fitting the die inserts and that caused by the stresses generated in the forging process. The method also enables the profile of the spark erosion electrode to be determined. An example of the application to forging spur gears is given.

Development of Die Technology of Mobile Phone Camera Module (모바일 폰 카메라 모듈 금형기술 개발)

  • Park, Joon-Hong;Jeon, Eon-Chan;Kim, Tae-Ho;Moon, Soon-Kyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.4
    • /
    • pp.17-23
    • /
    • 2008
  • Development of die technology for holder and barrel dies is necessary according to minimization of lens assembly, image sensor, and connectors. In these cases, there are two technical problems arising from die design. One is determination of knock-out pin location in die set. Minimization of lens assembly size make it difficult to obtain ejecting space. The other is whether or not high-precision die technology is possible to reduce torque variation when holer and barrel products is assembled. In this study, multi-cavity die set was developed taking advantage of gear-driven ejecting method. In the developed technology, die manufacturing technology was guaranteed with a high-precision level.

  • PDF