• Title/Summary/Keyword: Process Re-engineering

Search Result 683, Processing Time 0.026 seconds

Development of Seawater Intrusion Vulnerability Index Using AHP (계층화 분석기법을 이용한 해수침투 취약성지수 개발)

  • Yang, Jeong-Seok;Kim, Il-Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.3
    • /
    • pp.557-565
    • /
    • 2015
  • Sea level rise due to global warming causes seawater intrusion into aquifers in coastal areas. Seawater intrusion vulnerability index was developed using PSR (Pressure, State, Response) model and analysis hierarchy process (AHP). Coastal regions in Korea, Gangwon-do Sokcho-si, Incheon-si Ganghwa-gun, Chungcheongnam-do Taean-gun, Jeollanam-do Yeosu-si, Jindo-gun were chosen and 14 indicators were selected by considering the humanities, economic, social, environmental aspects. Re-scaling method was used for the standardization of indices and questionnaire survey was performed to calculate weight values for each index. The results showed that Yeosu-si was selected as the most vulnerable region to seawater intrusion. The seawater intrusion index developed in this research can be used to analyze the vulnerable regions to seawater intrusion and to establish a policy to minimize the seawater intrusion problems in coastal regions.

Application for Improving Resource Recover at Clay-Sandy Soil based on Electrokinetic Technology (동전기법을 이용한 점토성-사질토에 존재하는 자원 회수 증진을 위한 적용성 연구)

  • Shin, Sanghee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.10
    • /
    • pp.5-9
    • /
    • 2013
  • Electrokinetics technology is proposed for improving the recovery metals ion and oil from clay-sandy soil. In order to restore or extract them from clay-sandy soil, the gas produced by anode chamber is re-injected to the clay-sandy soil(sample). Samples produced in this study were completed to verify the proposed performance for 7 days by gradually increasing the pressure to the final pressure of 30psi($2.11kgf/cm^2$) through the compression process. Before compression, the copper rings were inserted into the sample, allowing us to observe the changes in appearance of copper ring after the end of the experiment. In this study, pressurized module and non-pressurized module were tested, respectively. The condition of test is a continuous process and the voltage gradient is 2V/cm during 24 hours. As a result, the efficiency of pressurized module is better than non-pressurized module.

MATERIAL RELIABILITY OF Ni ALLOY ELECTRODEPOSITION FOR STEAM GENERATOR TUBE REPAIR

  • Kim, Dong-Jin;Kim, Myong-Jin;Kim, Joung-Soo;Kim, Hong-Pyo
    • Nuclear Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.231-236
    • /
    • 2007
  • Due to the occasional occurrences of stress corrosion cracking(SCC) in steam generator tubing(Alloy 600), degraded tubes are removed from service by plugging or are repaired for re-use. Since electrodeposition inside a tube does not entail parent tube deformation, residual stress in the tube can be minimized. In this work, tube restoration via electrodeposition inside a steam generator tubing was performed after developing the following: an anode probe to be installed inside a tube, a degreasing condition to remove dirt and grease, an activation condition for surface oxide elimination, a tightly adhered strike layer forming condition between the electro forming layer and the Alloy 600 tube, and the condition for an electroforming layer. The reliability of the electrodeposited material, with a variation of material properties, was evaluated as a function of the electrodeposit position in the vertical direction of a tube using the developed anode. It has been noted that the variation of the material properties along the electrodeposit length was acceptable in a process margin. To improve the reliability of a material property, the causes of the variation occurrence were presumed, and an attempt to minimize the variation has been made. A Ni alloy electrodeposition process is suggested as a primary water stress corrosion cracking(PWSCC) mitigation method for various components, including steam generator tubes. The Ni alloy electrodeposit formed inside a tube by using the installed assembly shows proper material properties as well as an excellent SCC resistance.

Development of Wind Noise Analysis Procedure and Its Verification Using CFD Tool around an OSRVM (CFD를 이용한 OSRVM 주변의 공력소음 해석과정 개발 및 검증)

  • Park, Hyun-Ho;Han, Hyun-Wook;Kim, Moon-Sang;Ha, Jong-Paek;Kim, Yong-Nyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.4
    • /
    • pp.92-102
    • /
    • 2012
  • The process of the wind noise analysis around an OSRVM is developed and is verified by simulating unsteady flow field past a generic OSRVM mounted on the flat plate at the Reynolds number of $Re_D=5.2{\times}10^5$ based on the mirror diameter. The transient flow field past a generic OSRVM is simulated with various turbulence models, namely DES-SA, LES Constant SGS, and LES Dynamic SGS. The sound radiation is predicted using the Ffowcs- Williams and Hawkings analogy. For the present simulation, the 6.35million cells are generated. Time averaged pressure coefficients at 34 locations on the surface of the generic OSRVM are compared with the available experimental data. Also, 12 Sound Pressure Levels located on the surrounding mirror are compared with the available experimental data. Both of them show good agreements with experimental data.

A Method for Selective Storing and Visualization of Public Big Data Using XML Structure (XML구조를 이용한 공공 빅데이터의 선별 저장 및 시각화 방법)

  • Back, BongHyun;Ha, Il-Kyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.12
    • /
    • pp.2305-2311
    • /
    • 2017
  • In recent years, there have been tries to open public data from various government agencies along with publicization of public information for the public interest. In other words, various kinds of electronic data generated and collected by the public institutions as a result of their work are opened in the public portal sites. However, users who use it are limited in their use of big data due to lack of understanding of data format, lack of data processing knowledge, difficulty in accessing and managing data, and lack of visualization data to understand collected and stored data. Therefore, in this study, we propose a big data collection, storing and visualization platform that can collect big data provided by various public sites using data set URL and API regardless of data format, re-process collected data using XML structure.

A Novel Carrier-to-noise Power Ratio Estimation Scheme with Low Complexity for GNSS Receivers (GNSS 수신기를 위한 낮은 복잡도를 갖는 새로운 반송파 대 잡음 전력비 추정기법)

  • Yoo, Seungsoo;Baek, Jeehyeon;Yeom, Dong-Jin;Jee, Gyu-In;Kim, Sun Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.7
    • /
    • pp.767-773
    • /
    • 2014
  • The carrier-to-noise power ratio is a key parameter for determining the reliability of PVT (Position, Velocity, and Time) solutions which are obtained by a GNSS (Global Navigation Satellite System) receiver. It is also used for locking a tracking loop, deciding the re-acquisition process, and processing advanced navigation in the receiver subsystem. The representative carrier-to-noise power ratio estimation schemes are the narrowband-wideband power ratio method (NW), the MM (Moment Method), and Beaulieu's method (BL). The NW scheme is the most classical one for commercial GNSS receivers. It is often used as an authoritative benchmark for assessing carrier-to-noise power estimation schemes. The MM scheme is the least biased solution among them, and the BL scheme is a simpler scheme than the MM scheme. This paper focuses on the less biased estimation with low complexity when the residual phase noise remains, then proposes a novel carrier-to-noise power ratio estimation scheme with low complexity for GNSS receivers. The asymptotic bias of the proposed scheme is derived and compared with others, and the simulation results demonstrate that the complexity of the proposed scheme is lowest among them, while the estimation performance of the proposed scheme is similar to those of the BL and MM schemes in normal and high gained reception environments.

Infrared Imaging and a New Interpretation on the Reverse Contrast Images in GaAs Wafer (GaAs 웨이퍼의 적외선 영상기법 및 콘트라스트 반전 영상에 대한 새로운 해석)

  • Kang, Seong-jun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.11
    • /
    • pp.2085-2092
    • /
    • 2016
  • One of the most important properties of the IC substrate is that it should be uniform over large areas. Among the various physical approaches of wafer defect characterization, special attention is to be payed to the infrared techniques of inspection. In particular, a high spatial resolution, near infrared absorption method has been adopted to directly observe defects in semi-insulating GaAs. This technique, which relies on the mapping of infrared transmission, is both rapid and non-destructive. This method demonstrates in a direct way that the infrared images of GaAs crystals arise from defect absorption process. A new interpretation is presented for the observed reversal of contrast in the infrared absorption of nonuniformly distributed deep centers, related to EL2, in semi-insulating GaAs. The low temperature photoquenching experiment has demonstrated in a direct way that the contrast inverse images of GaAs wafers arise from both absorption and scattering mechanisms rather than charge re-distribution or local variation of bandgap.

Influence of NCG Charging Mass on the Heat Transport Capacity of Variable Conductance Heat Pipe (불응축가스량이 가변전열 히트파이프의 열수송 특성에 미치는 영향)

  • Suh Jeong-Se;Park Young-Sik;Chung Kyung-Taek
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.4
    • /
    • pp.320-327
    • /
    • 2006
  • Numerical analysis and experimental study are performed to investigate the effect of heat load and operating temperature on the thermal performance of several variable conductance heat pipe (VCHP) with screen meshed wick. The heat pipe is designed in 200 screen meshes, 500 mm length and 12.7 mm outer diameter tube of copper, water (4.8 g) is used as working fluid and nitrogen as non-condensible gas (NCG). Heat pipe used in this study has evaporator, condenser and adiabatic section, respectively. Analysis values and experimental data of wall temperature distribution along axial length are presented for heat transport capacity, condenser cooling water temperature change, degrees of an inclination angle and operating temperature. These analysis and experiment give the follow findings: For the same charging mass of working fluid, the operating temperature of heat pipe becomes to be high with the increasing of charging mass of NCG. When the heat flux at the evaporator section increases, the vapor pressure in the pipe rises and consequently compresses the NCG to the condenser end part and increases the active length of the condenser. From previous process, it is found out we can control the operating temperature effectively and also the analysis and experimental results are relatively coincided well.

A Simulation Study on the Hydrogen Liquefaction through Compact GM Refrigerator (소형 GM 냉동기를 이용한 수소 액화에 관한 시뮬레이션 연구)

  • JUNG, HANEUL;HAN, DANBEE;YANG, WONKYUN;BAEK, YOUNGSOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.5
    • /
    • pp.534-540
    • /
    • 2022
  • Liquid hydrogen has the best storage capacity per unit mass and is economical among storage methods for using hydrogen as fuel. As the demand for hydrogen increases, the need to develop a storage and supply system of liquid hydrogen is emphasizing. In order to liquefy hydrogen, it is necessary to pre-cool it to a maximum inversion temperature of -253℃. The Gifford-McMahon (GM) refrigerator is the most reliable and commercialized refrigerator among small-capacity cryogenic refrigerators, which can extract high-efficiency hydrogen through liquefied hydrogen production and boil of gas re-liquefaction. Therefore, in this study, the optimal conditions for liquefying gas hydrogen were sought using the GM cryocooler. The process was simulated by PRO/II under various cooling capacities of the GM refrigerator. In addition, the flow rate of hydrogen was calculated by comparing with specific refrigerator capacity depending on the pressure and flow rate of a refrigerant medium, helium. Simulations were performed to investigate the optimal values of the liquefaction flow rate and compression pressure, which aim for the peak refrigeration effect. Based on this, a liquefaction system can be selected in consideration of the cycle configuration and the performance of the refrigerator.

A Study on the Basic Properties of Foam Glass Aggregate for the Application of Insulated Foundation (단열바닥기초 적용을 위한 발포유리 골재의 기초 특성 평가)

  • Sang-Heon, Kim;Soo-Young, Moon;Hyun-Soo, Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.420-427
    • /
    • 2022
  • The present study evaluated the physical, mechanical and thermal properties of the foam glass aggregate and insulation foundation with this, in order to promote the use of insulated foundations using domestically produced foamed glass aggregates. As a result of the evaluation, the compacted foam glass aggregate showed at the same level as overseas products in terms of unit volume mass, particle size and other characteristics, and a compressive strength of 40.6 N/cm2, which was superior to the existing organic insulation materials such as XPS. And the thermal conductivity of the foam glass aggregate was 0.84 W/mK, and the thermal transmittance of the specimen simulating the insulation foundation was 0.37 W/mK, so the thermal conductivity of the foam glass aggregate was estimated to be 0.80 W/mK. With these results, it was found that it is possible to use the insulation foundation with re-producted foam glass aggregate by crushing the waste from the process of producing foam glass products.