• 제목/요약/키워드: Process Performance Graph

검색결과 117건 처리시간 0.028초

GBGNN: Gradient Boosted Graph Neural Networks

  • Eunjo Jang;Ki Yong Lee
    • Journal of Information Processing Systems
    • /
    • 제20권4호
    • /
    • pp.501-513
    • /
    • 2024
  • In recent years, graph neural networks (GNNs) have been extensively used to analyze graph data across various domains because of their powerful capabilities in learning complex graph-structured data. However, recent research has focused on improving the performance of a single GNN with only two or three layers. This is because stacking layers deeply causes the over-smoothing problem of GNNs, which degrades the performance of GNNs significantly. On the other hand, ensemble methods combine individual weak models to obtain better generalization performance. Among them, gradient boosting is a powerful supervised learning algorithm that adds new weak models in the direction of reducing the errors of the previously created weak models. After repeating this process, gradient boosting combines the weak models to produce a strong model with better performance. Until now, most studies on GNNs have focused on improving the performance of a single GNN. In contrast, improving the performance of GNNs using multiple GNNs has not been studied much yet. In this paper, we propose gradient boosted graph neural networks (GBGNN) that combine multiple shallow GNNs with gradient boosting. We use shallow GNNs as weak models and create new weak models using the proposed gradient boosting-based loss function. Our empirical evaluations on three real-world datasets demonstrate that GBGNN performs much better than a single GNN. Specifically, in our experiments using graph convolutional network (GCN) and graph attention network (GAT) as weak models on the Cora dataset, GBGNN achieves performance improvements of 12.3%p and 6.1%p in node classification accuracy compared to a single GCN and a single GAT, respectively.

의존 구문 분석을 이용한 질의 기반 정답 추출 (Query-based Answer Extraction using Korean Dependency Parsing)

  • 이도경;김민태;김우주
    • 지능정보연구
    • /
    • 제25권3호
    • /
    • pp.161-177
    • /
    • 2019
  • 질의응답 시스템은 크게 사용자의 질의를 분석하는 방법인 질의 분석과 문서 내에서 적합한 정답을 추출하는 방법인 정답 추출로 이루어지며, 두 방법에 대한 다양한 연구들이 진행되고 있다. 본 연구에서는 문장의 의존 구문 분석 결과를 이용하여 질의응답 시스템 내 정답 추출의 성능 향상을 위한 연구를 진행한다. 정답 추출의 성능을 높이기 위해서는 문장의 문법적인 정보를 정확하게 반영할 필요가 있다. 한국어의 경우 어순 구조가 자유롭고 문장의 구성 성분 생략이 빈번하기 때문에 의존 문법에 기반한 의존 구문 분석이 적합하다. 기존에 의존 구문 분석을 질의응답 시스템에 반영했던 연구들은 구문 관계 정보나 구문 형식의 유사도를 정의하는 메트릭을 사전에 정의해야 한다는 한계점이 있었다. 또 문장의 의존 구문 분석 결과를 트리 형태로 표현한 후 트리 편집 거리를 계산하여 문장의 유사도를 계산한 연구도 있었는데 이는 알고리즘의 연산량이 크다는 한계점이 존재한다. 본 연구에서는 구문 패턴에 대한 정보를 사전에 정의하지 않고 정답 후보 문장을 그래프로 나타낸 후 그래프 정보를 효과적으로 반영할 수 있는 Graph2Vec을 활용하여 입력 자질을 생성하였고, 이를 정답 추출모델의 입력에 추가하여 정답 추출 성능 개선을 시도하였다. 의존 그래프를 생성하는 단계에서 의존 관계의 방향성 고려 여부와 노드 간 최대 경로의 길이를 다양하게 설정하며 자질을 생성하였고, 각각의 경우에 따른 정답추출 성능을 비교하였다. 본 연구에서는 정답 후보 문장들의 신뢰성을 위하여 웹 검색 소스를 한국어 위키백과, 네이버 지식백과, 네이버 뉴스로 제한하여 해당 문서에서 기존의 정답 추출 모델보다 성능이 향상함을 입증하였다. 본 연구의 실험을 통하여 의존 구문 분석 결과로 생성한 자질이 정답 추출 시스템 성능 향상에 기여한다는 것을 확인하였고 해당 자질을 정답 추출 시스템뿐만 아니라 감성 분석이나 개체명 인식과 같은 다양한 자연어 처리 분야에 활용 될 수 있을 것으로 기대한다.

딥러닝 기술을 적용한 그래프 알고리즘 성능 연구 (Research on Performance of Graph Algorithm using Deep Learning Technology)

  • 노기섭
    • 문화기술의 융합
    • /
    • 제10권1호
    • /
    • pp.471-476
    • /
    • 2024
  • 다양한 스마트 기기 및 컴퓨팅 디바이스의 보급에 따라 빅데이터 생성이 광범위하게 일어나고 있다. 기계학습은 데이터의 패턴을 학습하여 추론을 수행하는 알고리즘이다. 다양한 기계학습 알고리즘 중에서 주목을 받는 알고리즘은 신경망 기반의 딥러닝 학습이다. 딥러닝은 다양한 응용이 발표되면서 빠른 성능 향상을 달성하고 있다. 최근 딥러닝 알고리즘 중에서 그래프 구조를 활용하여 데이터를 분석하려는 시도가 증가하고 있다. 본 연구에서는 그래프 구조를 활용하여 딥러닝 네트워크에 전달하기 위한 그래프 생성 방법을 제시한다. 본 논문은 그래프 생성 과정에서 노드의 속성과 간선의 가중치를 일반화하고 행렬화 과정을 제시하여 딥러닝 입력에 필요한 구조로 전환하는 방법을 제시한다. 그래프 생성 과정에서 속성과 가중치 정보를 보전할 수 있는 선형변환 매트릭스 적용 방법을 제시한다. 마지막으로 일반 그래프의 딥러닝 입력 구조를 제시하고 성능 분석을 위한 접근법을 제시한다.

Is-A Node Type Modeling Methodology to Improve Pattern Query Performance in Graph Database

  • Park, Uchang
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권4호
    • /
    • pp.123-131
    • /
    • 2020
  • 그래프 데이터베이스에서 패턴질의는 관계 데이터베이스 SQL과 비교하여 질의의 쉬운 표현, 높은 질의 처리 성능을 기대할 수 있는 장점이 있다. 그러나 그래프 데이터베이스는 관계 데이터베이스와 달리 논리적 데이터 모델을 구축하는 방법론이 정의되어 있지 않아 모델링에 따라 패턴 질의의 장점을 활용하지 못할 수 있다. 본 연구는 그래프 모델링 과정 중 나타나는 is-a 노드 모델링 방법에서 일반화 모델로 설계할 경우와 특수화 모델로 설계할 경우 그래프 패턴질의의 성능 차이가 있음을 실험하였다. 실험 결과 is-a 노드 설계를 특수화 모델로 설계할 경우 더 우수한 성능을 얻을 수 있음을 보였다. 또 추가로 패턴질의를 작성할 때 변수를 노드나 간선에 바인딩시키는 경우 그렇지 않는 경우보다 성능이 우수할 수 있음을 보였다. 실험 결과들은 그래프 데이터베이스에서 패턴질의에 대한 is-a 노드 모델링 방법 및 그래프 질의 작성 방법으로 제시될 수 있다.

연관지식의 효율적인 표현 및 추론이 가능한 지식그래프 기반 지식지도 (Knowledge graph-based knowledge map for efficient expression and inference of associated knowledge)

  • 유기동
    • 지능정보연구
    • /
    • 제27권4호
    • /
    • pp.49-71
    • /
    • 2021
  • 문제해결을 위해 지식을 활용하는 사용자는 내용 면에서 관련된 또 다른 지식, 즉 연관지식에 대한 교차적이고 순차적인 탐색을 진행한다. 지식지도는 관리하는 지식의 현황을 보여주는 도식이자 지식저장소의 분류체계로서, 지식 간 연관성에 기반한 사용자의 지식 탐색을 지원하는 도구이다. 따라서 지식지도는 지식 간 연관성에 의한 네트워크 형식으로 표현되며, 이를 정의 및 추론하는 데에 최적화된 기술을 접목하여 구현되어야 한다. 이를 위해 본 연구는 관리하는 개체와 개체 간 관계를 표현 및 추론하는 데에 최적화된 기능성을 발휘하는 것으로 알려진 그래프DB를 이용하여 지식그래프 기반 지식지도를 개발하는 방법론을 제시한다. 제시된 방법론의 유효성을 확인하기 위하여, 선행 연구의 온톨로지 기반 지식지도 구축 사례 데이터를 그래프DB에 적용하여 지식그래프 기반 지식지도를 구현하고, 구현된 지식 네트워크의 유효성과 Class 자동 구성 능력을 선행 연구의 결과와 비교하는 성능 테스트를 진행한다. 성능 테스트 결과, 본 연구의 지식그래프 기반 지식지도는 선행 연구의 온톨로지 기반 지식지도와 동일한 수준의 성능을 나타냈으며, 지식 및 지식 간 관계 정의 및 추론을 더욱 효율적으로 진행할 수 있음을 확인하였다. 본 연구의 결과는 연관지식에 대한 사용자의 인지과정을 반영한 지식 탐색 기능의 구현에 활용될 수 있으며, 추론에 의한 새로운 연관지식의 발견을 통해 자율적으로 확장되는 지능적 지식베이스의 개발에 응용될 수 있다.

그래프 신경망을 이용한 단순 선박 선형의 저항성능 시뮬레이션 (Resistance Performance Simulation of Simple Ship Hull Using Graph Neural Network)

  • 박태원;김인섭;이훈;박동우
    • 대한조선학회논문집
    • /
    • 제59권6호
    • /
    • pp.393-399
    • /
    • 2022
  • During the ship hull design process, resistance performance estimation is generally calculated by simulation using computational fluid dynamics. Since such hull resistance performance simulation requires a lot of time and computation resources, the time taken for simulation is reduced by CPU clusters having more than tens of cores in order to complete the hull design within the required deadline of the ship owner. In this paper, we propose a method for estimating resistance performance of ship hull by simulation using a graph neural network. This method converts the 3D geometric information of the hull mesh and the physical quantity of the surface into a mathematical graph, and is implemented as a deep learning model that predicts the future simulation state from the input state. The method proposed in the resistance performance experiment of simple hull showed an average error of about 3.5 % throughout the simulation.

공정 안정성 평가를 위한 새로운 척도 지수 계발 (Development of a New Index to Assess the Process Stability)

  • 김정배;윤원영;서순근
    • 품질경영학회지
    • /
    • 제50권3호
    • /
    • pp.473-490
    • /
    • 2022
  • Purpose: The purpose of this study is to propose a new useful suggestion to monitor the stability of process by developing a stability ratio or index related to investigating how well the process is controlled or operated to the specified target. Methods: The proposed method to monitor the stability of process is building up a new measure index which is making up for the weakness of the existing index in terms of short or long term period of production. This new index is a combined one considering both stability and capability of process to the specification limits. We suppose that both process mean and process variation(or deviation) are changing on time period. Results: The results of this study are as follows: regarding the stability of process as well as capability of process, it was shown that two indices, called SI(stability index) and PI(performance index), can be expressed in two-dimensional X-Y graph simultaneously. This graph is categorized as 4 separated partitions, which are characterized by its numerical value intervals of SI and PI which are evaluated by test statistics. Conclusion: The new revised index is more robust than the existing one in investigating the stability of process in terms of short and long period of production, even in case both process mean and variation are changing.

The Effect of Graphical Formats on Computer-Based Idea Generation Performance

  • 정종호
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제27권1호
    • /
    • pp.153-169
    • /
    • 2018
  • Purpose Since human brains catch images faster than texts or numbers, infographics has been widely used in business in the form of "information dashboard" to enhance the efficiency of decision-making. Groupware, however, has neglected the adoption and use of infographics, in particular, in the idea generation process. Given that an overall performance of groupware-based idea generation is no better than that of the (paper-and-pencil-based) Nominal Group Technique, Jung et al. (2010) adopted the notion of infographics in the form of performance feedback to solve the productivity paradox. With the consistent results, which demonstrate beneficial effects of infographics on performance enhancement, an interesting observation that groups with the bar chart treatment performed better than groups with the dot chart treatment was made. The main purpose of this study was to find if there were a performance consistency between the outcomes from the previous study and the outcomes from the current study. Design/methodology/approach In experiment 1, we employed the same system used in the previous study (i.e., Jung et al., 2010). As individuals' contributions accumulated, the mechanism visually displayed individuals' performances two-dimensionally in the form of a bar chart or a dot chart. Then, we compared the performance outcomes from this study to the outcomes from previous study (i.e., Jung et al., 2010). In experiment 2, we modified the performance graph to test the effect of "playfulness" on performance by converting dots to car images. Then, we compared the performance outcome from experiment 2 to the outcomes from experiment 1. Findings Just like our interesting (and unexpected) finding in Jung et al.'s study (2010), the outcome confirmed a consistent superior performance of a bar chart. This implies that a bar chart is a better choice when stimulating performance with a visual aid in the context of groupware-based idea generation. Although a bar chart was criticized in a way that errors of length-area judgments are 40 ~ 250% greater than those of positional judgments along a common scale, such illusion turned out to be facilitating upward performance comparison better. Regarding Experiment 2, the outcome showed that the revised-dot graph is as good as the bar graph in terms of quantity and quality score of ideas. We attribute the performance enhancement of the resized-dot to the interaction between the motivational characteristic and the situational characteristic of playfulness because individuals in the revised-dot graph treatment performed better than individuals in the dot graph treatment. Given the order of performance (Bar >= Revised Dot > Dot) that the revised-dot treatment performed the same as (or lower than) the bar treatment, an additional research is warranted to reach to a consistent outcome.

제한된 메모리를 가진 GPU를 이용한 효율적인 그래프 알고리즘 처리 기법 (An Efficient Graph Algorithm Processing Scheme using GPUs with Limited Memory)

  • 송상호;이현병;최도진;임종태;복경수;유재수
    • 한국콘텐츠학회논문지
    • /
    • 제22권8호
    • /
    • pp.81-93
    • /
    • 2022
  • 최근 대용량 그래프의 반복 처리를 위하여 GPU를 이용하는 연구가 진행되고 있다. 메모리가 제한된 GPU를 이용하여 대용량 그래프를 처리하기 위해서는 그래프를 서브 그래프로 분할한 후 서브 그래프들을 스케줄링해서 처리해야 한다. 그러나 활성 정점에 따라 서브 그래프가 처리되기 때문에 그래프 처리 과정 속에서 불필요한 데이터 전송이 반복된다. 본 논문에서는 메모리가 제한된 GPU 환경에서 효율적인 그래프 알고리즘 처리 기법을 제안하고 성능 평가를 수행한다. 제안하는 기법은 그래프 차등 서브 그래프 스케줄링 방법과 그래프 분할 방법으로 구성된다. 대용량 그래프 분할 방법은 GPU에서 효율적으로 처리할 수 있도록 대용량 그래프를 서브 그래프로 분할할 수 있는 방법을 결정한다. 차등 서브그래프 스케줄링 방법은 GPU에서 처리하는 서브그래프를 스케줄링하여 반복적으로 사용되는 HOST-GPU 간의 데이터 중복 전송을 줄인다. 다양한 그래프 처리 알고리즘들의 성능 평가를 수행함으로써 제안하는 기법은 기존 분할 기법 대비 170%, 기존 처리 기법 대비 268% 향상되었다.

스토리지 내 프로세싱 방식을 사용한 그래프 프로세싱의 최적화 방법 (Optimization of Graph Processing based on In-Storage Processing)

  • 송내영;한혁;염헌영
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제23권8호
    • /
    • pp.473-480
    • /
    • 2017
  • 최근 들어 플래시 메모리 Solid State Driver(SSD)와 같은 반도체 기반 저장장치가 고성능으로 발전하면서 저장장치 내부 컨트롤러의 CPU와 메모리 같은 자원을 응용의 요구에 맞추어 최적으로 활용해보고자 하는 움직임이 있었다. 이러한 개념을 스토리지 내 프로세싱 방식(In-Storage Processing, ISP)이라고 한다. ISP의 기능이 탑재된 저장장치에서는 호스트에서 수행하던 연산의 일부를 나누어 처리할 수 있으므로 호스트의 부하가 줄어들고 저장장치 내에서 데이터가 가공되어 처리되기 때문에 호스트까지의 데이터 전달 시간이 줄어든다. 본 논문에서는 이러한 ISP 기능을 활용하여 그래프 질의 처리를 최적화하기 위한 방식을 제안하고, 제안된 최적화 그래프 처리 방식이 graph500 벤치마크의 성능을 최대 20%까지 향상 시켰음을 보여준다.