• Title/Summary/Keyword: Process Input and Output Variables

Search Result 138, Processing Time 0.034 seconds

On the Application af Robust Multivariable Controller to Distillation Column (증류탑 제어에 있어서 로바스트 다변수 제어 응용에 관한 연구)

  • 고재욱;이원규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.238-243
    • /
    • 1986
  • Distillation columns are widely used in almost every chemical plant. The use of multivariable control for such units is attractive because of the strong interactions exhibited between outputs and inputs and the desire to control simultaneously both top and bottom products. In this research design of a robust multivariable controller for distillation column was considered; output feedback controller with proportional and integral modes was designed using pole assignment. The transfer function matrix was obtained by fitting the step response realtions between single input double output pairs of variables. This matrix was then converted to linear time invariant state space model by multivariable realization technique. With the proposed multivariable proportional and integral controller applied to the process, the result of the digital computer simulation showed a good performance of asymtotic tracking. The limited experimental performance of this multivariable control was compared with the result from simulation. It was found that the proposed controller performed satisfactorily for the distillation column which separated binary mixture of methanol and water.

  • PDF

Development of models for evaluating the short-circuiting arc phenomena of gas metal arc welding (GMA 용접의 단락이행 아크 현상의 평가를 위한 모델 개발)

  • 김용재;이세헌;강문진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.454-457
    • /
    • 1997
  • The purpose of this study is to develop an optimal model, using existing models, that is able to estimate the amount of spatter utilizing artificial neural network in the short circuit transfer mode of gas metal arc (GMA) welding. The amount of spatter generated during welding can become a barometer which represents the process stability of metal transfer in GMA welding, and it depends on some factors which constitute a periodic waveforms of welding current and arc voltage in short circuit GMA welding. So, the 12 factors, which could express the characteristics for the waveforms, and the amount of spatter are used as input and output variables of the neural network, respectively. Two neural network models to estimate the amount of spatter are proposed: A neural network model, where arc extinction is not considered, and a combined neural network model where it is considered. In order to reduce the calculation time it take to produce an output, the input vector and hidden layers for each model are optimized using the correlation coefficients between each factor and the amount of spattcr. The est~mation performance of each optimized model to the amount of spatter IS assessed and compared to the est~mation performance of the model proposed by Kang. Also, through the evaluation for the estimation performance of each optimized model, it is shown that the combined neural network model can almost perfectly predict the amount of spatter.

  • PDF

A Study on the Efficiency Measurement of Vehicles by DEA Method (DEA에 의한 자동차 효율성 비교분석에 관한 연구)

  • Jung, Kyung-Hee;Cho, Jai-Rip
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2008.11a
    • /
    • pp.189-199
    • /
    • 2008
  • It is good to use DEA method as it can measure the efficiency without depending on a specific function like cost function. The method also finds out the most efficient group among the sample groups and gives us a specific number. For example, it shows what kind of factor of inefficient group gives how much input and produces how much output. Originally DEA, which was developed by Charnes, Cooper and Rhodes, allows us not only to measure the relative efficiency of Decision Making Units(DMUs) of non-profit organizations whose success cannot be measured by a single bottom-line figure such as profit but also to integrate several variables, which have different measuring scale, into a single model. Therefore we can use physical scales and financial scales simultaneously in the same model without any transformation process. In this study, price and measurable performance indexes of vehicles are used as input and outputs respectively. The purpose of this study is to propose an effective approach for evaluating the relative efficiency of vehicles and to determine the vehicles have high performance efficiency compared to product cost.

  • PDF

Spring Connected Size-Variable Rigid Block Model for Automatic Synthesis of a Planar Linkage Mechanism (평면 링크기구 자동 설계를 위한 스프링 연결 사이즈 가변 블록 모델)

  • Kim, Bum-Suk;Yoo, Hong-Hee
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.822-826
    • /
    • 2008
  • A linkage mechanism is a device to convert an input motion into a desired output motion. Traditional linkage mechanism designs are based on trial and error approaches so that size or shape changes of an original mechanism often result in improper results. In order to resolve these problems, an improved automatic mechanism synthesis method that determines the linkage type and dimensions by using an optimization method during the synthesis process has been proposed. For the synthesis, a planar linkage is modeled as a set of rigid blocks connected by zero-length translational springs with variable stiffness. In this study, the sizes of rigid blocks were also treated as design variables for more general linkage synthesis. The values of spring stiffness and the size of rigid block yielding a desired output motion at the end-effecter are found by using an optimization method.

  • PDF

Implicit Treatment of Technical Specification and Thermal Hydraulic Parameter Uncertainties in Gaussian Process Model to Estimate Safety Margin

  • Fynan, Douglas A.;Ahn, Kwang-Il
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.684-701
    • /
    • 2016
  • The Gaussian process model (GPM) is a flexible surrogate model that can be used for nonparametric regression for multivariate problems. A unique feature of the GPM is that a prediction variance is automatically provided with the regression function. In this paper, we estimate the safety margin of a nuclear power plant by performing regression on the output of best-estimate simulations of a large-break loss-of-coolant accident with sampling of safety system configuration, sequence timing, technical specifications, and thermal hydraulic parameter uncertainties. The key aspect of our approach is that the GPM regression is only performed on the dominant input variables, the safety injection flow rate and the delay time for AC powered pumps to start representing sequence timing uncertainty, providing a predictive model for the peak clad temperature during a reflood phase. Other uncertainties are interpreted as contributors to the measurement noise of the code output and are implicitly treated in the GPM in the noise variance term, providing local uncertainty bounds for the peak clad temperature. We discuss the applicability of the foregoing method to reduce the use of conservative assumptions in best estimate plus uncertainty (BEPU) and Level 1 probabilistic safety assessment (PSA) success criteria definitions while dealing with a large number of uncertainties.

A study on fuzzy control for vehicle air conditioner (자동차용 공기조화기의 퍼지 제어에 관한 연구)

  • 김양영;봉재경;진상호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.516-519
    • /
    • 1997
  • In this paper, the control of the temperature for the vehicle air conditioner is implemented with the fuzzy controller using a micro controller. The linguistic control rules of the fuzzy controller are separated into two out variables(multi input multi output ; MIMO) : one is those for the blower motor, and the other is those for air mix door. The error in fuzzy controller, the input variable is defined as difference between the reference temperature and the actual temperature in the cabin room. The fuzzy control rules are established from the human operator experience, and based engineering knowledge about the process. The method of the center of gravity is utilized for the defuzzification.

  • PDF

A Learning Method of LQR Controller Using Jacobian (자코비안을 이용한 LQR 제어기 학습법)

  • Lim, Yoon-Kyu;Chung, Byeong-Mook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.8 s.173
    • /
    • pp.34-41
    • /
    • 2005
  • Generally, it is not easy to get a suitable controller for multi variable systems. If the modeling equation of the system can be found, it is possible to get LQR control as an optimal solution. This paper suggests an LQR learning method to design LQR controller without the modeling equation. The proposed algorithm uses the same cost function with error and input energy as LQR is used, and the LQR controller is trained to reduce the function. In this training process, the Jacobian matrix that informs the converging direction of the controller Is used. Jacobian means the relationship of output variations for input variations and can be approximately found by the simple experiments. In the simulations of a hydrofoil catamaran with multi variables, it can be confirmed that the training of LQR controller is possible by using the approximate Jacobian matrix instead of the modeling equation and this controller is not worse than the traditional LQR controller.

Endocardial boundary detection by fuzzy inference on echocardiography (퍼지 추론에 의한 심초음파 영상의 심내벽 윤곽선 검출)

  • 원철호;채승표;구성모;김명남;조진호
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.5
    • /
    • pp.35-44
    • /
    • 1997
  • In this paper, a an algorithm that detects the endocardial boundary, expanding the region from endocardial cavity using fuzzy inference, is proposed. This algorithm decides the ventricular cavity by fuzzy inference in process of searching each pixel from the inside of left ventricle in echocardial image and expands it. Uncertainty and fuzziness exists in decision of endocardial boundary. Therefore, we convert the lingustic representation of mean, standard deviation, and threshold value that are characteristic variables of endocardial boundary to fuzzy input and output variables. And, we extract proposed method is robuster to noise than radial searching method that is highly dependent on center position. To prove the similarity of detected boundary by fuzzy nference, we used the measures of SIZE, correlation coefficient, MSD, and RMSE and had acquired reasonable results.

  • PDF

Control of Grade Change Operations in Paper Plants Using Model Predictive Control Method (모델예측제어 기법을 이용한 제지공정에서의 지종교체 제어)

  • Kim, Do-Hoon;Yeo, Young-Gu;Park, Si-Han;Kang, Hong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.35 no.4
    • /
    • pp.48-56
    • /
    • 2003
  • In this work an integrated model for paper plants combining wet-end and dry section is developed and a model predictive control scheme based on the plant model is proposed. Closed-loop process identification method is employed to produce a state-space model. Thick stock, filler flow, machine speed and steam pressure are selected as input variables and basis weight, ash content and moisture content are considered as output variables. The desired output trajectory is constructed in the form of 1st-order dynamics. Results of simulations for control of grade change operations are compared with plant operation data collected during the grade change operations under the same conditions as in simulations. From the comparison, we can see that the proposed model predictive control scheme reduces the grade change time and achieves stable steady-state.

Non-linear Data Classification Using Partial Least Square and Residual Compensator (부분 최소 자승법과 잔차 보상기를 이용한 비선형 데이터 분류)

  • 김경훈;김태영;최원호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.2
    • /
    • pp.185-191
    • /
    • 2004
  • Partial least squares(PLS) is one of multiplicate statistical process methods and has been developed in various algorithms with the characteristics of principal component analysis, dimensionality reduction, and analysis of the relationship between input variables and output variables. But it has been limited somewhat by their dependency on linear mathematics. The algorithm is proposed to classify for the non-linear data using PLS and the residual compensator(RC) based on radial basis function network (RBFN). It compensates for the error of the non-linear data using the RC based on RBFN. The experimental result is given to verify its efficiency compared with those of previous works.