Electronic discovery refers to the discovery of electronically stored information. The differences between producing paper documents and electronic information can be categorized into seven groups: massive volume, persistence, dynamic and changeable contents, metadata, environment-dependence, dispersion and searchability. Since these differences make the discovery more expensive and less expeditious, it is necessary to limit the scope of discovery. Accordingly, a number of arbitration institutions have already introduced rules, guidelines or protocols on electronic discovery. ICDR guidelines take a minimal approach and address only the proper form of electronic document. CIArb Protocol is intended to act as a checklist for discovery of electronic data. CPR Protocol offers four modes of discovery of electronic documents ranging from minimal to extensive among which the parties may choose the way of electronic discovery. IBA Rules on Evidence and ICC Rules are silent on the issue of electronic discovery, however, working parties of the ICC are considering updates to the rules to deal with electronic discovery. It is disputed whether rules, guidelines or protocols on electronic discovery is necessary or appropriate. Although some have suggested that existing rules can make adequate provision for electronic discovery, it is more desirable to prepare new rules, guidelines or protocols to make arbitrators and counsels be familiar with electronic discovery process, to provide an adequate standard for electronic discovery and to limit the time and cost of electronic discovery. Such rules on electronic discovery should include provisions regarding the form of electronic document production, conference between parties regarding electronic discovery, keyword search, bearing the expenses to reduce disputes over electronic discovery.
Thanh-Hai Nguyen;Kyoung-Sook Kim;Dinh-Lam Pham;Kwanghoon Pio Kim
KSII Transactions on Internet and Information Systems (TIIS)
/
v.18
no.8
/
pp.2316-2332
/
2024
In this paper, we introduce a web-based system that leverages the capabilities of the ρ(rho)-algorithm, which is a Structure Information Control Net (SICN)-oriented process mining algorithm, with open-source platforms, including Django, Graphviz, and Cytoscape, to facilitate the rediscovery and visualization of business process models. Our approach involves discovering SICN-oriented process models from process instances from the IEEE XESformatted process enactment event logs dataset. This discovering process is facilitated by the ρ-algorithm, and visualization output is transformed into either a JSON or DOT formatted file, catering to the compatibility requirements of Cytoscape or Graphviz, respectively. The proposed system utilizes the robust Django platform, which enables the creation of a userfriendly web interface. This interface offers a clear, concise, modern, and interactive visualization of the rediscovered business processes, fostering an intuitive exploration experience. The experiment conducted on our proposed web-based process discovery system demonstrates its ability and efficiency showing that the system is a valuable tool for discovering business process models from process event logs. Its development not only contributes to the advancement of process mining but also serves as an educational resource. Readers, students, and practitioners interested in process mining can leverage this system as a completely free process miner to gain hands-on experience in rediscovering and visualizing process models from event logs.
The Journal of Korean Institute of Communications and Information Sciences
/
v.38C
no.12
/
pp.1134-1149
/
2013
Pub/sub system enables data users to access any necessary data without knowledge of the data producer and synchronization with the data producer. It is widely used as the middleware technology for the data-centric services. DDS (Data Distribution Service) is a standard middleware supported by the OMG (Object Management Group), one of global standardization organizations. It is considered quite useful as a standard middleware for US military services. However, it is well-known that it takes considerably long time in searching the Participants and Endpoints in the system, especially when the system is booting up. In this paper, we propose a discovery scheme to reduce the latency when the participants and Endpoints are densely distributed in a small area. We propose to modify the standard DDS discovery process in three folds. First, we integrate the Endpoint discovery process with the Participant discovery process. Second, we reduce the number of connections per participant during the discovery process by adopting the concept of successors in Distributed Hashing scheme. Third, instead of UDP, the participants are connected through TCP to exploit the reliable delivery feature of TCP. We evaluated the performance of our scheme by comparing with the standard DDS discovery process. The evaluation results show that our scheme achieves quite lower discovery latency in case that the Participants and the Endpoints are densely distributed in a local network.
Currently, developed technologies for semantic web services discovery are based on ontologies. These ontologies are DAML-S(DARPA Agent Markup Language for Services) and Process Handbook Project of MIT. These technologies have some problems for intelligent web services discovery. So, in this paper we analyzed those ontologies and proposed TM-S, Topic Maps for Services. TM-S is the presentation model for semantic web services. And TM-S includes benefits and complements weaknesses of those ontologies. And we proposed TMS-QL, TM-S Query Language. TMS-QL is query language for intelligent web services discovery. At last, we designed and implemented intelligent web service discovery system that deals TM-S ontology and TMS-QL
Ethereum is an open software platform based on blockchain technology that enables the construction and distribution of distributed applications. Ethereum uses a fully distributed connection method in which all participating nodes participate in the network with equal authority and rights. Ethereum networks use Kademlia-based node discovery protocols to retrieve and store node information. Ethereum is striving to stabilize the entire network topology by implementing node discovery protocols, but systems for monitoring are insufficient. This paper develops a WireShark dissector that can receive packet information in the Ethereum node discovery process and provides network packet measurement results. It can be used as basic data for the research on network performance improvement and vulnerability by analyzing the Ethereum node discovery process.
The purpose of this article is to develop a dynamic model of organizational capabilities and knowledge creation, and at the same time identify the organizational capability factors for effective knowledge creation, by empirically analyzing the history of new Quinolone antibacterial drug compound (LB20304a) discovery process at LG, as a case in point. Major findings of this study are as follows. First, in a science-based area such as drug development, the core of successful knowledge creation lies in creative combination of different bodies of scientific explicit knowledge. Second, the greater the difficulty of learning external knowledge, the more tacit knowledge is needed for the recipient firm to effectively exploit that knowledge. Third, in science-based sector such as pharmaceutical industry, the key for successful knowledge creation lies in the capability of recruiting and retaining star scientists. Finally, for effective knowledge creation, a firm must keep its balance among three dimensions of organizational capabilities: local, process, architectural capabilities.
The purpose of this study was to suggest a grounded theory on the process of undergraduate students' generating pattern-knowledge about scientific episodes. The pattern-discovery tasks were administered to seven college students majoring in elementary education. The present study found that college students show five types of procedural knowledge represented in the process of pattern-discovery, such as element, elementary variation, relative prior knowledge, predictive-pattern, and final pattern-knowledge. Furthermore, subjects used seven types of thinking ways, such as recognizing objects, recalling knowledges, searching elementary variation, predictive-pattern discovery, confirming a predictive-pattern, combining patterns, and selecting a pattern. In addition, pattern-discovering process involves a systemic process of element, elementary variation, relative prior knowledge, generating and confirming predictive-pattern, and selecting final pattern-knowledge. The processes were shown the abductive and deductive reasoning as well as inductive reasoning. This study also discussed the implications of these findings for teaching and evaluating in science education.
Proceedings of the Korea Inteligent Information System Society Conference
/
2001.01a
/
pp.431-434
/
2001
Knowledge discovery in databases(KDD) is the process for extracting valid, novel, potentially useful and understandable knowledge form real data. There are many academic and industrial activities with new technologies and application areas. Particularly, data mining is the core step in the KDD process, consisting of many algorithms to perform clustering, pattern recognition and rule induction functions. The main goal of these algorithms is prediction and description. Prediction means the assessment of unknown variables. Description is concerned with providing understandable results in a compatible format to human users. We introduce an efficient data mining algorithm considering predictive and descriptive capability. Reasonable pattern is derived from real world data by a revised neural network model and a proposed fuzzy rule extraction technique is applied to obtain understandable knowledge. The proposed neural network model is a hierarchical self-organizing system. The rule base is compatible to decision makers perception because the generated fuzzy rule set reflects the human information process. Results from real world application are analyzed to evaluate the system\`s performance.
Journal of Electrical Engineering and information Science
/
v.1
no.2
/
pp.146-146
/
1996
Although knowledge discovery is increasingly important in databases, the discovered knowledge sets may not be effectively used for application domains. It is partly because knowledge discovery does not take user's interests into account, and too many knowledge sets are discovered to handle efficiently. We believe that user's interests are conveyed by a query and if a nested query is concerned it may include a user's thought process. This paper describes a novel concept for discovering knowledge sets based on query processing. Knowledge discovery process is performed by: extracting features from databases, spanning features to generate range features, and constituting a knowledge set. The contributions of this paper include the following: (1) not only simple queries but also nested queries are considered to discover knowledge sets regarding user's interests and user's thought process, (2) not only positive examples (answer to a query) but also negative examples are considered to discover knowledge sets regarding database abstraction and database exceptions, and (3) finally, the discovered knowledge sets are quantified.
With the development of computer storage and the rapidly growing ability to process large amounts of data, the multivariate control charts have received an increasing attention. The existing univariate and multivariate control charts are a single hypothesis testing approach to process mean or variance by using a single statistic plot. This paper proposes a multiple hypothesis approach to developing a new multivariate control scheme. Plotted Hotelling's $T^2$ statistics are used for computing the corresponding p-values and the procedure for controlling the false discovery rate in multiple hypothesis testing is applied to the proposed control scheme. Some numerical simulations were carried out to compare the performance of the proposed control scheme with the ordinary multivariate Shewhart chart in terms of the average run length. The results show that the proposed control scheme outperforms the existing multivariate Shewhart chart for all mean shifts.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.