• Title/Summary/Keyword: Process Data Analysis

Search Result 9,332, Processing Time 0.031 seconds

An Empirical Study on Manufacturing Process Mining of Smart Factory (스마트 팩토리의 제조 프로세스 마이닝에 관한 실증 연구)

  • Taesung, Kim
    • Journal of the Korea Safety Management & Science
    • /
    • v.24 no.4
    • /
    • pp.149-156
    • /
    • 2022
  • Manufacturing process mining performs various data analyzes of performance on event logs that record production. That is, it analyzes the event log data accumulated in the information system and extracts useful information necessary for business execution. Process data analysis by process mining analyzes actual data extracted from manufacturing execution systems (MES) to enable accurate manufacturing process analysis. In order to continuously manage and improve manufacturing and manufacturing processes, there is a need to structure, monitor and analyze the processes, but there is a lack of suitable technology to use. The purpose of this research is to propose a manufacturing process analysis method using process mining and to establish a manufacturing process mining system by analyzing empirical data. In this research, the manufacturing process was analyzed by process mining technology using transaction data extracted from MES. A relationship model of the manufacturing process and equipment was derived, and various performance analyzes were performed on the derived process model from the viewpoint of work, equipment, and time. The results of this analysis are highly effective in shortening process lead times (bottleneck analysis, time analysis), improving productivity (throughput analysis), and reducing costs (equipment analysis).

An Analysis Method of Superlarge Manufacturing Process Data Using Data Cleaning and Graphical Analysis (데이터 정제와 그래프 분석을 이용한 대용량 공정데이터 분석 방법)

  • 박재홍;변재현
    • Journal of Korean Society for Quality Management
    • /
    • v.30 no.2
    • /
    • pp.72-85
    • /
    • 2002
  • Advances in computer and sensor technology have made it possible to obtain superlarge manufacturing process data in real time, letting us extract meaningful information from these superlarge data sets. We propose a systematic data analysis procedure which field engineers can apply easily to manufacture quality products. The procedure consists of data cleaning and data analysis stages. Data cleaning stage is to construct a database suitable for statistical analysis from the original superlarge manufacturing process data. In the data analysis stage, we suggest a graphical easy-to-implement approach to extract practical information from the cleaned database. This study will help manufacturing companies to achieve six sigma quality.

Analyzing Operation Deviation in the Deasphalting Process Using Multivariate Statistics Analysis Method

  • Park, Joo-Hwang;Kim, Jong-Soo;Kim, Tai-Suk
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.7
    • /
    • pp.858-865
    • /
    • 2014
  • In the case of system like MES, various sensors collect the data in real time and save it as a big data to monitor the process. However, if there is big data mining in distributed computing system, whole processing process can be improved. In this paper, system to analyze the cause of operation deviation was built using the big data which has been collected from deasphalting process at the two different plants. By applying multivariate statistical analysis to the big data which has been collected through MES(Manufacturing Execution System), main cause of operation deviation was analyzed. We present the example of analyzing the operation deviation of deasphalting process using the big data which collected from MES by using multivariate statistics analysis method. As a result of regression analysis of the forward stepwise method, regression equation has been found which can explain 52% increase of performance compare to existing model. Through this suggested method, the existing petrochemical process can be replaced which is manual analysis method and has the risk of being subjective according to the tester. The new method can provide the objective analysis method based on numbers and statistic.

Information Visualization for the Manufacturing Process Optimization Based on Design of Experiment and Data Analysis (실험계획법과 데이터 분석 기반의 제조공정 최적화를 위한 정보 시각화)

  • Kim, Jae Chun;Jin, Seon A;Park, Young Hee;Noh, Seong Yeo;Lee, Hyun Dong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.9
    • /
    • pp.393-402
    • /
    • 2015
  • Data visualization technology helps people easily understand various data and its analysis result, so usefulness of it is expected in the real industrial manufacturing sites. The large amount of data which is occurred at the manufacturing sites is able to fulfill very important roll to improve the manufacturing process. In this paper, we propose an information visualization for the manufacturing process optimization based on design of experimental and data analysis. The manufacturing process may be improved and be reduced cause of faulty by providing the easy-process analysis to understand the operation site through the information visualization of data analysis result.

A Study on Process Management Method of Offshore Plant Piping Material using Process Mining Technique (프로세스 마이닝 기법을 이용한 해양플랜트 배관재 제작 공정 관리 방법에 관한 연구)

  • Park, JungGoo;Kim, MinGyu;Woo, JongHun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.2
    • /
    • pp.143-151
    • /
    • 2019
  • This study describes a method for analyzing log data generated in a process using process mining techniques. A system for collecting and analyzing a large amount of log data generated in the process of manufacturing an offshore plant piping material was constructed. The analyzed data was visualized through various methods. Through the analysis of the process model, it was evaluated whether the process performance was correctly input. Through the pattern analysis of the log data, it is possible to check beforehand whether the problem process occurred. In addition, we analyzed the process performance data of partner companies and identified the load of their processes. These data can be used as reference data for pipe production allocation. Real-time decision-making is required to cope with the various variances that arise in offshore plant production. To do this, we have built a system that can analyze the log data of real - time system and make decisions.

The Study on Application of Data Gathering for the site and Statistical analysis process (초기 데이터 분석 로드맵을 적용한 사례 연구)

  • Choi, Eun-Hyang;Ree, Sang-Bok
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2010.04a
    • /
    • pp.226-234
    • /
    • 2010
  • In this thesis, we present process that remove mistake of data before statistical analysis. If field data which is not simple examination about validity of data, we cannot believe analyzed statistics information. As statistical analysis information is produced based on data to be input in statistical analysis process, the data to be input should be free of error. In this paper, we study the application of statistical analysis road map that can enhance application on site by organizing basic theory and approaching on initial data exploratory phase, essential step before conducting statistical analysis. Therefore, access to statistical analysis can be enhanced and reliability on result of analysis can be secured by conducting correct statistical analysis.

  • PDF

A case study on the application of process abnormal detection process using big data in smart factory (Smart Factory Big Data를 활용한 공정 이상 탐지 프로세스 적용 사례 연구)

  • Nam, Hyunwoo
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.1
    • /
    • pp.99-114
    • /
    • 2021
  • With the Fourth Industrial Revolution based on new technology, the semiconductor manufacturing industry researches various analysis methods such as detecting process abnormalities and predicting yield based on equipment sensor data generated in the manufacturing process. The semiconductor manufacturing process consists of hundreds of processes and thousands of measurement processes associated with them, each of which has properties that cannot be defined by chemical or physical equations. In the individual measurement process, the actual measurement ratio does not exceed 0.1% to 5% of the target product, and it cannot be kept constant for each measurement point. For this reason, efforts are being made to determine whether to manage by using equipment sensor data that can indirectly determine the normal state of each step of the process. In this study, the Functional Data Analysis (FDA) was proposed to define a process abnormality detection process based on equipment sensor data and compensate for the disadvantages of the currently applied statistics-based diagnosis method. Anomaly detection accuracy was compared using machine learning on actual field case data, and its effectiveness was verified.

Analysis of Multivariate Process Capability Using Box-Cox Transformation (Box-Cox변환을 이용한 다변량 공정능력 분석)

  • Moon, Hye-Jin;Chung, Young-Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.2
    • /
    • pp.18-27
    • /
    • 2019
  • The process control methods based on the statistical analysis apply the analysis method or mathematical model under the assumption that the process characteristic is normally distributed. However, the distribution of data collected by the automatic measurement system in real time is often not followed by normal distribution. As the statistical analysis tools, the process capability index (PCI) has been used a lot as a measure of process capability analysis in the production site. However, PCI has been usually used without checking the normality test for the process data. Even though the normality assumption is violated, if the analysis method under the assumption of the normal distribution is performed, this will be an incorrect result and take a wrong action. When the normality assumption is violated, we can transform the non-normal data into the normal data by using an appropriate normal transformation method. There are various methods of the normal transformation. In this paper, we consider the Box-Cox transformation among them. Hence, the purpose of the study is to expand the analysis method for the multivariate process capability index using Box-Cox transformation. This study proposes the multivariate process capability index to be able to use according to both methodologies whether data is normally distributed or not. Through the computational examples, we compare and discuss the multivariate process capability index between before and after Box-Cox transformation when the process data is not normally distributed.

Process operation improvement methodology based on statistical data analysis (통계적 분석기법을 이용한 공정 운전 향상의 방법)

  • Hwang, Dae-Hee;Ahn, Tae-Jin;Han, Chonghun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1516-1519
    • /
    • 1997
  • With disseminationof Distributed Control Systems(DCS), the huge amounts of process operation data could have been available and led to figure out process behaviors better on the statistical basis. Until now, the statistical modeling technology has been susally applied to process monitoring and fault diagnosis. however, it has been also thought that these process information, extracted from statistical analysis, might serve a great opportunity for process operation improvements and process improvements. This paper proposed a general methodolgy for process operation improvements including data analysis, backing up the result of analysis based on the methodology, and the mapping physical physical phenomena to the Principal Components(PC) which is the most distinguished feature in the methodology form traditional statistical analyses. The application of the proposed methodology to the Balst Furnace(BF) process has been presented for details. The BF process is one of the complicated processes, due to the highly nonlinear and correlated behaviors, and so the analysis for the process based on the mathematical modeling has been very difficult. So the statisitical analysis has come forward as a alternative way for the useful analysis. Using the proposed methodology, we could interpret the complicated process, the BF, better than any other mathematical methods and find the direction for process operation improvement. The direction of process operationimprovement, in the BF case, is to increase the fludization and the permeability, while decreasing the effect of tapping operation. These guide directions, with those physical meanings, could save fuel cost and process operator's pressure for proper actions, the better set point changes, in addition to the assistance with the better knowledge of the process. Open to set point change, the BF has a variety of steady state modes. In usual almost chemical processes are under the same situation with the BF in the point of multimode steady states. The proposed methodology focused on the application to the multimode steady state process such as the BF, consequently can be applied to any chemical processes set point changing whether operator intervened or not.

  • PDF

Design of Manufacturing Data Analysis System using Data Mining Techniques (데이터마이닝 기법을 이용한 생산데이터 분석시스템 설계)

  • Lee H.W.;Lee G.A.;Choi S.;Park H.K.;Bae S.M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.611-612
    • /
    • 2006
  • Many data mining techniques have been proved useful in revealing important patterns from large data sets. Especially, data mining techniques play an important role in a customer data analysis in a financial industry and an electronic commerce. Also, there are many data mining related research papers in a semiconductor industry and an automotive industry. In addition, data mining techniques are applied to the bioinformatics area. To satisfy customers' various requirements, each industry should develop new processes with more accurate production criteria. Also, they spend more money to guarantee their products' quality. In this manner, we apply data mining techniques to the production-related data such as a test data, a field claim data, and POP (point of production) data in the automotive parts industry. Data collection and transformation techniques should be applied to enhance the analysis results. Also, we classify various types of manufacturing processes and proposed an analysis scheme according to the type of manufacturing process. As a result, we could find inter- or intra-process relationships and critical features to monitor the current status of the each process. Finally, it helps an industry to raise their profit and reduce their failure cost.

  • PDF