• Title/Summary/Keyword: Process Cycle Efficiency

Search Result 450, Processing Time 0.03 seconds

Development and Performance Evaluation of a Filtration Equipment to Reuse PFC Waste Solution Generated on PFC Decontamination (PFC 제염 시 발생된 PFC 폐액의 재사용을 위한 여과장치 개발 및 성능평가)

  • Kim Gye-Nam;Jeong Cheol-Jin;Won Hui-Jun;Choi Wang-Kyu;Jung Chong-Hun;Oh Won-Zin;Park Jin-Ho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.2
    • /
    • pp.161-170
    • /
    • 2006
  • PFC(Perfluorocarbon) decontamination process is one of best methods to remove hot particulate adhered on the inner surface of hot cell and surface of equipment in hot cell. It was necessary to develop a filtration equipment to reuse the PFC waste solution generated on PFC decontamination due to the high cost of PFC solution and for minimization of the volume of second waste solution. The filtration equipment was developed to remove hot particulate in PFC waste solution. It was made suitable size and weight in consideration of hot cell gate and crane. And it has wheels for easy movement. Flux of the filtration equipment decreased with particulate concentration increase. It consists of pre-filter($1.4{\mu}m$) and final-filter($0.2{\mu}m$) for protection of the flux decrease along filtration time. It treatment capacity of waste solution is 0.2 L/min.

  • PDF

Modeling of High-throughput Uranium Electrorefiner and Validation for Different Electrode Configuration (고효율 우라늄 전해정련장치 모델링 및 전극 구성에 대한 검증)

  • Kim, Young Min;Kim, Dae Young;Yoo, Bung Uk;Jang, Jun Hyuk;Lee, Sung Jai;Park, Sung Bin;Lee, Han soo;Lee, Jong Hyeon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.4
    • /
    • pp.321-332
    • /
    • 2017
  • In order to build a general model of a high-throughput uranium electrorefining process according to the electrode configuration, numerical analysis was conducted using the COMSOL Multiphysics V5.3 electrodeposition module with Ordinary Differential Equation (ODE) interfaces. The generated model was validated by comparing a current density-potential curve according to the distance between the anode and cathode and the electrode array, using a lab-scale (1kg U/day) multi-electrode electrorefiner made by the Korea Atomic Energy Research Institute (KAERI). The operating temperature was $500^{\circ}C$ and LiCl-KCl eutectic with 3.5wt% $UCl_3$ was used for molten salt. The efficiency of the uranium electrorefining apparatus was improved by lowering the cell potential as the distance between the electrodes decreased and the anode/cathode area ratio increased. This approach will be useful for constructing database for safety design of high throughput spent nuclear fuel electrorefiners.

Development of Various Pilot Scale's Ultrasound Systems and Sonodegradation of Naphthalene in Water (다양한 형태의 Pilot Scale 초음파 시스템 개발 및 나프탈렌 분해효율 검증)

  • Park, Jong-Sung;Lee, Ha-Yun;Han, Jong-Hun;Her, Nam-Guk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.4
    • /
    • pp.281-288
    • /
    • 2011
  • Recently, researches that a variety of contaminants in water are removed by sonolysis technology with oxidation and pyrolysis process from cavitation were conducted. However, there are few studies for sonochemical treatment by a pilot-scale ultrasound system. This research focused on developing pilot-scale ultrasound systems, which could be an continuously effective treatment for a large volumes of contaminants, and demonstrating the feasibility of utilizing these systems to remove naphthalene from groundwater. V-120 type reactor was found to be 1.4~2.2 times higher effective than the normal type. A total of three different pilot scale's systems consisted of installing effluent and irrigation water in order to be a continuos system, including supplemental additives, and applying a V-120 type reactor and a external cooling cycle system. Naphthalene levels treated by three systems were lower than a recommended guideline of naphthalene for drinking water in EPA. Especially, the naphthalene removal efficiencies of PS1 and PS2 systems were over 97%. The pilot-scale continuous ultrasound clean-up system delivered over 84~95% naphthalene removal efficiency for treatment of 10~20 liter of groundwater. In addition, the ultrasound system could be successfully applied to the conditions of artificial and genuine groundwater contaminated with naphthalene.

Development of LCC-LCA Integrated Analysis Model for Efficiency (경제성 평가를 위한 LCC-LCA 종합분석 모델 개발 및 사례적용)

  • Ahn, Hye-Ryeon;Lim, Jin Ho;Huh, Young-Ki
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.6
    • /
    • pp.585-593
    • /
    • 2013
  • For a successful construction project, systematic and objective decision-making is a prerequisite from the planning and designing stages. However, previous LCC analysis methods have focused only on simple cost savings and the accompanying economic efficacy while missing the environmental aspects of a structure. Although recently, a new approach of integrated $CO_2$ analysis has been introduced, which is more advanced than the existing simple LCC methods, it is difficult to collect all of the data necessary for each evaluation item since the product-specific cost is not presented under the LCC. In this research, cost evaluation items were selected by relatively high weights and items with heavy influence over a decision-making process in order to suggest an LCC-LCA integrated analysis model that is useful in comprehensively assessing the economic cost and environmental cost throughout the whole life cycle of a structure. The developed LCC-LCA integrated analysis model was applied to actual practices and compared with previous methods to test the model's effectiveness.

Feasibility Studies on Anaerobic Sequencing Batch Reactor for Sludge Treatment

  • Chang Duk;Hur Joon-Moo;Son Bu-Soon;Park Jong-An;Jang Bong-Ki
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.1 no.2
    • /
    • pp.125-136
    • /
    • 1997
  • Digestion of a municipal wastewater sludge by the anaerobic sequencing batch reactor(ASBR) was investigated to evaluate the performance of the ASBR process at a critical condition of high-solids-content feed. The reactors were operated at an HRT of 10 days with an equivalent loading rate of 0.8-1.5 gVS/L/d at $35^{\circ}C.$ The main conclusions drawn from this study were as follows: 1. Digestion of a municipal wastewater sludge was possible using the ASBR in spite of high concentration of settleable solids in the sludge. The ASBRS with 3- and 4-day cycle period showed almost identical high digestion performances. 2. No adverse effect on digestion stability was observed in the ASBRS in spite of withdrawal and replenishment of $30\%\;or\;40\%$ of liquid contents. A conventional anaerobic digester could be easily converted to the ASBR without any stability problem. 3. Flotation thickening occurred in thicken step of the ASBRS throughout steady state, and floating bed volume at the end of thicken period occupied about $70\%$ of the working volume of the reactor. Efficiency of flotation thickening in the ASBRS could be comparable to that of additional gravity thickening of a completely mixed digester. 4. Solids were accumulated rapidly in the ASBR during start-up period. Solids concentrations in the ASBRS were 2.6 times higher than that in the completely mixed control reactor at steady state. Dehydrogenase activity had a strong correlation with the solids concentration. Dehydrogenase activity of the digested sludge in the ASBR was 2.9 times higher than that of the sludge in the control reactor, and about 25 times higher than that of the subnatant in the ASBR. 5. Remarkable increase in equivalent gas production of $52\%$ was observed at the ASBRS compared with the control reactor in spite of similar Quality of clarified effluent from the ASBRS and control reactor. The increase in gas production from the ASBRS was believed to be combined results of accumulation of microorganisms, higher driving force applied, and additional long-term degradation of organics continuously accumulated.

  • PDF

L-arginine and N-carbamoylglutamic acid supplementation enhance young rabbit growth and immunity by regulating intestinal microbial community

  • Sun, Xiaoming;Shen, Jinglin;Liu, Chang;Li, Sheng;Peng, Yanxia;Chen, Chengzhen;Yuan, Bao;Gao, Yan;Meng, Xianmei;Jiang, Hao;Zhang, Jiabao
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.1
    • /
    • pp.166-176
    • /
    • 2020
  • Objective: An experiment was conducted to determine the effects of L-arginine (L-Arg) and N-carbamoylglutamic acid (NCG) on the growth, metabolism, immunity and community of cecal bacterial flora of weanling and young rabbits. Methods: Eighteen normal-grade male weanling Japanese White rabbits (JWR) were selected and randomly divided into 6 groups with or without L-Arg and NCG supplementation. The whole feeding process was divided into weanling stage (day 37 to 65) and young stage (day 66 to 85). The effects of L-Arg and NCG on the growth, metabolism, immunity and development of the ileum and jejunum were compared via nutrient metabolism experiments and histological assessment. The different communities of cecal bacterial flora affected by L-Arg and NCG were assessed using high-throughput sequencing technology and bioinformatics analysis. Results: The addition of L-Arg and NCG enhanced the growth of weanling and young rabbit by increasing the nitrogen metabolism, protein efficiency ratio, and biological value, as well as feed intake and daily weight gain. Both L-Arg and NCG increased the concentration of immunoglobulin A (IgA), IgM, and IgG. NCG was superior to L-Arg in promoting intestinal villus development by increasing villus height, villus height/crypt depth index, and reducing the crypt depth. The effects of L-Arg and NCG on the cecal bacterial flora were mainly concentrated in different genera, including Parabacteroides, Roseburia, dgA-11_gut_group, Alistipes, Bacteroides, and Ruminococcaceae_UCG-005. These bacteria function mainly in amino acid transport and metabolism, energy production and conversion, lipid transport and metabolism, recombination and repair, cell cycle control, cell division, and cell motility. Conclusion: L-Arg and NCG can promote the growth and immunity of weanling and young JWR, as well as effecting the jejunum and ileum villi. L-Arg and NCG have different effects in the promotion of nutrient utilization, relieving inflammation and enhancing adaptability through regulating microbial community.

Removal Efficiency of Organic Iodide on Silver Ion-Exchanged Yeolite and TEDA-AC at High Temperature Process (고온공정에서 은교환 제올라이트 및 TEDA 첨착활성탄의 유기요오드 제거성능)

  • 최병선;박근일;김성훈;윤주현;배윤영;지성균;양호연;유승곤
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.1 no.1
    • /
    • pp.65-72
    • /
    • 2003
  • Adsorption and desorption characteristics of methyl iodide at high temperature conditions up to 25$0^{\circ}C$ by TEDA-impregnated activated carbon and silver-ion exchanged zeolite(AgX-10), which are used for radioiodine retention in nuclear facility, were experimentally evaluated. In the range of temperature from 3$0^{\circ}C$ to 25$0^{\circ}C$, the adsorption capacity of base activated carbon decreased sharply with increasing temperature but that of TEDA-impregnated activated carbon showed higher value even at high temperature ranges. Especially, the residual amount of methyl iodide after desorption on TEDA-AC represented 30% lower value than that on AgX-10. However, it can be used as an adsorbent for the removal of methyl iodide up to 15$0^{\circ}C$ if it is preventing explosion by Ignition. The breakthrough curves of methyl iodide in the fixed bed packed with AgX-10 uP to 40$0^{\circ}C$ were compared upon the effects of bed temperatures, bed depth and input concentration of methyl iodide. Removal mechanism of methyl iodide on AgX-10 was proposed, based on the analysis of by-product gas generated from adsorption reaction.

  • PDF

The Synthesis and the Electrochemical Properties of Al Doped $V_2O_5$ (Al이 도핑된 오산화바나듐의 합성 및 전기화학적 특성)

  • Park, Heai-Ku;Joung, Ok-Young;Lee, Man-Ho
    • Applied Chemistry for Engineering
    • /
    • v.16 no.4
    • /
    • pp.491-495
    • /
    • 2005
  • Vanadium pentoxide xerogels with a doping ratio of $Al/V_2O_5$ ranging from 0.01 to 0.05 were synthesized by doping Al into $V_2O_5$ xerogel via the sol-gel process. By using the synthesized $Al_xV_2O_5$, the $Li/Al_xV_2O_5$ cells were assembled to investigate the chemical and electrochemical properties. Surface morphology of the $Al_xV_2O_5$ xerogel showed an anisotropic corrugated sheet-like matrix, and the interlayer distance was about $11.5{\AA}$. The IR spectra of the $Al_xV_2O_5$ revealed that the doped Al was coordinated to the vanadyl group in $V_2O_5$. The $Al_xV_2O_5$ xerogels showed enhanced reversibility and energy density compared with the $V_2O_5$ xerogel. The specific capacity of the $Al_{0.05}V_2O_5$ xerogel was more than 200 mAh/g at 10 mA/g discharge rate, and cycle efficiency was about 90% after the 31st cycling test between 1.9 V and 3.9 V.

Effect of AlF3 on Zr Electrorefining Process in Chloride-Fluoride Mixed Salts for the Treatment of Cladding Hull Wastes (폐 피복관 처리를 위한 염소계-불소계 혼합용융염 내 지르코늄 전해정련공정에서 삼불화알루미늄의 효과 연구)

  • Lee, Chang Hwa;Kang, Deok Yoon;Lee, Sung-Jai;Lee, Jong-Hyeon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.2
    • /
    • pp.127-137
    • /
    • 2019
  • Zr electrorefining is demonstrated herein using Zirlo tubes in a chloride-fluoride mixed molten salt in the presence of $AlF_3$. Cyclic voltammetry reveals a monotonic shift in the onset of metal reduction kinetics towards positive potential and an increase in intensity of the additional peaks associated with Zr-Al alloy formation with increasing $AlF_3$ concentration. Unlike the galvanostatic deposition mode, a radial plate-type Zr growth is evident at the top surface of the salt during Zr electrorefining at a constant potential of -1.2 V. The diameter of the plate-type Zr deposit gradually increases with increasing $AlF_3$ concentration. Scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDX) and X-ray photoelectron spectroscopy (XPS) analyses for the plate-type Zr deposit show that trace amount of Al is incorporated as Zr-Al alloys with different chemical compositions between the top and bottom surface of the deposit. Addition of $AlF_3$ is effective in lowering the residual salt content in the deposit and in improving the current efficiency for Zr recovery.

Carbon Footprint Analysis of Mineral Paper using LCA Method (전과정 평가기법을 활용한 미네랄 페이퍼의 탄소발자국 연구)

  • Kim, Byoung Jik;Kang, Seong Min;Lee, Jeongwoo;Sa, Jae Hwan;Kim, Ik;Jeon, Eui Chan
    • Journal of Climate Change Research
    • /
    • v.4 no.3
    • /
    • pp.201-210
    • /
    • 2013
  • In recent years, with the rising interest to reduce greenhouse gas emissions, the demand for using environmentally friendly product with low greenhouse gas emission is increasing in the printing industry as well. In this study, the carbon footprint of environmentally friendly product mineral paper that uses less plastic and wood than normal printing paper materials was analyzed by utilizing the life cycle assessment (LCA) technique. An analysis utilizing the LCA technique was done per the Korea carbon footprint certification guidelines and, for scope of study, it included the premanufacturing stage and manufacturing stage except for the use and disposal stages. As a result of the study, the emission coefficient of the mineral paper was calculated to be $0.81kg\;CO_2eq/kg$ and the emission from electricity usage of the entire greenhouse gas emission was calculated to be 45.85% ($0.37kg\;CO_2eq/kg$). In order to reduce greenhouse gas emission, required are the efforts to reduce the environmental loads by using energies that have relatively lower environmental loads, such as improvement in electricity usage efficiency and renewable energy, by increasing product completion rates during the manufacturing process of mineral paper.