• Title/Summary/Keyword: Process

Search Result 124,382, Processing Time 0.085 seconds

Process Sequence Design of Longneck Flange by Cold Extrusion Process (냉간압출을 이용한 롱넥 플랜지 성형에 대한 공정설계)

  • 임중연;황병복;김철식
    • Transactions of Materials Processing
    • /
    • v.8 no.2
    • /
    • pp.160-168
    • /
    • 1999
  • This paper is concerned with the process sequence design of longneck flange forming by using cold extrusion with thick hollow pipe. The conventional hot forming process to produce a longneck flange is investigated by thermo-viscoplastic finite element method to observe the metal flow in detail and evaluate design requirements. Based on the results of simulation of the current hot forming process, design strategy for improving the process sequence are developed using the thick hollow pipe. The main goal is to obtain an appropriate improved process sequence which can produce the required product most economically without tensile cracking, workpiece buckling, and overloading of tools. Newly process condition such as semi-die angle, reductio ratio of cross-sectional area of axisymmetrical extrusion process. The final designed process can provide very useful guidelines to other flange forming industries.

  • PDF

A Comparative Analysis and Process Design among the Gear Blank Forging Process (기어블랭크 단조공정의 비교해석 및 공정설계)

  • 최호준;허성창;장동환;황병복
    • Transactions of Materials Processing
    • /
    • v.8 no.6
    • /
    • pp.541-553
    • /
    • 1999
  • Cold forging is a special type of forging process in which metal is forced to flow plastically under compressive force into a variety of shapes in room temperature. Gear blank, which is produced by cold forging, is concerned with the production method of transmission gear. Based on the results of simulation of the current four-stage process, the gear blank forging process for improving the conventional process sequence is designed. The rigid plastic finite element analysis for improving the conventional process. The new process consists of three stage operations with one annealing treatment after first operation. Based on the results of simulation of the proposed process, a required equipment could be selected. The new designed process appears to be more economical in producing the gear blank.

  • PDF

Treatment Efficiency and Organic Matter Characterization of Wastewater through Activated Sludge Process and Advanced Wastewater Treatment Process (활성슬러지공정과 고도처리공정에 따른 하수처리수의 처리효율과 유기물 특성)

  • Hong, JiHea;Sohn, Jinsik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.6
    • /
    • pp.807-813
    • /
    • 2004
  • Wastewater was treated by two different treatment processes; activated sludge process and advanced wastewater treatment process (KNR process) using lab-scale experiment. Two treated wastewater showed good treatment efficiency of organic matter removal, up to 90% removal. Nitrogen and phosphorus were not effectively removed though activated sludge process, while KNR process showed good removal efficiency of nitrogen and phosphorus; 56% nitrogen removal and 95% phosphorus removal. KNR process showed better removal efficiency of organic matter, nitrogen, and phosphorus compared to activated sludge process. Organic matter characterization was tracked though measurement of UV scan, SUVA, and XAD fractionation. Treated wastewater showed higher SUVA value than wastewater influent, indicting less aromatic characteristic of organic matter. XAD fractionation showed hydrophilic fraction decreased though wastewater treatment, suggesting microbes preferentially digest hydrophilic and aliphatic molecules rather than hydrophobic and aromatic molecules of organic matter.

A Comparative Study of SPC and EPC with a Focus on Their Integration (통계적 공정 관리(SPC)와 엔지니어링 공정 관리(EPC)의 비교 조사 : 통합 방안을 중심으로)

  • Lee, Myeong-Soo;Kim, Kwang-Jae
    • Journal of Korean Society for Quality Management
    • /
    • v.33 no.1
    • /
    • pp.22-31
    • /
    • 2005
  • With the common objective to improve process productivity and product quality, statistical process control (SPC) and engineering process control (EPC) have been widely used in the discrete-parts industry and the process industry, respectively. The major focus of SPC is on process monitoring, while that of EPC is on process adjustment. The emergence of the hybrid industry necessitates a synergistic combination of the two methods for an effective process control. This paper investigates the existing studies on SPC, EPC, and the integration of the two methods. This paper also presents future research issues in this field.

Generative Process Planning through Feature Recognition (특징형상 인식을 통한 창성적 자동 공정계획 수립 - 복합특징형상 분류를 중심을 -)

  • 이현찬;이재현
    • Korean Journal of Computational Design and Engineering
    • /
    • v.3 no.4
    • /
    • pp.274-282
    • /
    • 1998
  • A feature is a local shape of a product directly related to the manufacturing process. The feature plays a role of the bridge connecting CAD and CAM. In the process planning for he CAM, information on manufacturing is required. To get the a manufacturing information from CAD dat, we need to recognize features. Once features are recognized, they are used as an input for the process planning. In this paper, we thoroughly investigate the composite features, which are generated by interacting simple features. The simple features in the composite feature usually have precedence relation in terms of process sequence. Based on the reason for the precedence relation, we classify the composite features for the process planning. In addition to the precedence relation, approach direction is used as an input for the process planning. In the process planning, the number of set-up orientations are minimized whole process sequence for the features are generated. We propose a process planning algorithm based on the topological sort and breadth-first search of graphs. The algorithn is verified using sample products.

  • PDF

Analysis of Purchase Process Using Process Mining (프로세스 마이닝을 이용한 구매 프로세스 분석)

  • Kim, Seul-Gi;Jung, Jae-Yoon
    • The Journal of Bigdata
    • /
    • v.3 no.1
    • /
    • pp.47-54
    • /
    • 2018
  • Previous studies of business process analysis have analyzed various factors such as task, customer service, operator convenience, and execution time prediction. To accurately analyze these factors, it is effective to utilize actual historical data recorded in information systems. Process mining is a technique for analyzing various elements of a business process from event log data. In this case study, process mining was applied to the transaction data of a purchase agency to analyze the business process of their procurement process, the execution time, and the operators.

Application of magnetic activated sludge process for a milking parlor wastewater treatment with nitrogen and phosphorus recovery

  • Onodera, Toshihito;Sakai, Yasuzo;Kashiwazaki, Masaru;Ihara, Ikko;Lal, Saha Mihir
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.3
    • /
    • pp.20-25
    • /
    • 2021
  • Milking parlor wastewater contains high concentration suspended solid (SS), nitrogen, and/or phosphate as well as organic compounds. A new biological wastewater process by magnetic separation, magnetic activated sludge (MAS) process, was applied to milking parlor wastewater treatment process. A three step wastewater treatment process of coagulation sedimentation / ammonia stripping (C/S), magnetic activated sludge process and contact oxidation (CO) was proposed for removal of these pollutants. First step, C/S process recovered 96% TN and 96% PO43--P as resource for fertilizer from the wastewater. 81% biochemical oxygen demand (BOD) in wastewater was removed after MAS process. As a results, all pollutant concentrations satisfied Japanese effluent standards. Most of residual BOD and SS were removed by the CO process. It was estimated that the proposed process could reduce the process space to 1/7.

Separation of Cd(II) from Aqueous Solutions by A New Consecutive Process Consisting of Supported Liquid Membrane and Electrodialysis

  • Altin, Sureyya;Altin, Ahmet
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.14-21
    • /
    • 2019
  • Supported liquid membrane process usually is used for recovering or enrichment of valuable metals in the industrial wastewater. But, even if the metals in the wastewater was separated with high chemical selectivity, it cannot be enough concentrated since separation performance of supported liquid membrane (SLM) process is limited by concentration gradient between feed solution and stripping solution. If metal concentration in the stripping solution to be enough low, transport of metal through membrane can be accomplishment constantly. Therefore, Electrodialysis (ED) has been placed after SLM process and the stripping solution of SLM was used as the feed solution for the ED process. Transport of ions in the solutions is successfully performed by ED process. Thus, the metal concentration in the stripping solution does not rise as to stop ion transport. Besides, valuable metals easily are concentrated by ED process for re-use. In this study, effects of operation parameters like initial Cd(II) concentration, HCl concentration in the feed solution of SLM and applied voltage are investigated on separation efficiency, flux and permeability of the both processes. As the feed solution concentration increased, all performance values has increased. When initial concentration of 100 mg/L is used, separation performances (SP) are 55% and 70%, for SLM and consecutive process, respectively. The best HCl concentration in the feed solution of SLM has determined as 2 M, in this conditions SP are 64% and 72%, for SLM and consecutive process, respectively. With increased of applied voltage on ED process, SP of the consecutive process has been raised from 72% to 83%. According to the obtained experimental data, consecutive process has better separation performance than SLM. When the separation performances of both processes were compared for the same operating conditions, it was determined higher the separation efficiency, permeability and flux values of the consecutive process, 8%, 9% and %10.6, respectively. Consequently, the use of the consecutive process increases the performance efficiency of both processes. The consecutive process studied has quite a good chemical separation efficiency, and enrichment capability. Moreover, this process requires few water and energy.

Note on the Transformed Geometric Poisson Processes

  • Park, Jeong-Hyun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.8 no.2
    • /
    • pp.135-141
    • /
    • 1997
  • In this paper, it is investigated the properties of the transformed geometric Poisson process when the intensity function of the process is a distribution of the continuous random variable. If the intensity function of the transformed geometric Poisson process is a Pareto distribution then the transformed geometric Poisson process is a strongly P-process.

  • PDF