• Title/Summary/Keyword: Process

Search Result 124,485, Processing Time 0.129 seconds

Involvement of $Cu^{++}$-Catalyzed Peroxidation in Degradation of Collagen and Protective Mechanism of Sodium Salicylate on this Peroxidative Reaction ($Cu^{++}$ 촉매작용에 의한 과산화 현상이 Collagen 손상에 관여함과 Sodium Salicylate에 의한 보호 작용)

  • Kim, Yong-Sik
    • The Korean Journal of Pharmacology
    • /
    • v.23 no.1
    • /
    • pp.25-31
    • /
    • 1987
  • The present study examines firstly, the inhibition of collagen gelation to explore the possible involvement of $Cu^{++}$-catalyzed peroxidation in rheumatoid arthritis and secondly, the effect of sodium salicylate on this peroxidative reaction to provide a possible explanation for its mechanism of anti-inflammatory action. Incubation of collagen obtained from rat skin with $Cu^{++}$ and $H_2O_2$ resulted in the inhibition of gelation in terms of maximal turbidity and lag phase, but either $Cu^{++}$ or $H_2O_2$ alone essentially gave no effect in the collagen gelation. In the presence of sodium salicylate the inhibited gelation of collagen induced by $Cu^{++}$ and $H_2O_2$ was reversed with the dependency of the concentration of sodium salicylate. Moreover, the rate of $H_2O_2$ decomposition by $Cu^{++}$ was accelerated by sodium salicylate and this decomposition of $H_2O_2$ was found to be saturable in terms of concentration of this drugs. Thus it can be expected that $Cu^{++}$ -catalyzed peroxidation attacks collagen resulting in change of structural or functional integrity of collagen, and sodium salicylate may act on this peroxidative process, possibly through the enhancement of catalatic action of $Cu^{++}$. From these results $Cu^{++}$-catalyzed peroxidation can be in part responsible for degradation of joint tissue in rheumatoid arthritis and sodium salicylate may exert its anti-inflammatory action by this peroxidative reaction.

  • PDF

NADPH Oxidase and Mitochondrial ROS are Involved in the $TNF-{\alpha}$-induced Vascular Cell Adhesion Molecule-1 and Monocyte Adhesion in Cultured Endothelial Cells

  • Yu, Jae-Hyeon;Kim, Cuk-Seong;Yoo, Dae-Goon;Song, Yun-Jeong;Joo, Hee-Kyoung;Kang, Gun;Jon, Ji-Yoon;Park, Jin-Bong;Jeon, Byeong-Hwa
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.4
    • /
    • pp.217-222
    • /
    • 2006
  • Atherosclerosis is considered as a chronic inflammatory process. However, the nature of the oxidant signaling that regulates monocyte adhesion and its underlying mechanism is poorly understood. We investigated the role of reactive oxygen species on the vascular cell adhesion molecule-1 (VCAM-1) and monocyte adhesion in the cultured endothelial cells. $TNF-{\alpha}$ at a range of $1{\sim}30\;ng/ml$ induced VCAM-1 expression dose-dependently. BCECF-AM-labeled U937 cells firmly adhered on the surface of endothelial cells when the endothelial cells were incubated with $TNF-{\alpha}$ (15 ng/ml). Ten $\;{\mu}mol/L$ of SB203580, an inhibitor of p38 MAPK, significantly reduced $TNF-{\alpha}-induced$ VCAM-1 expression, compared to the JNK inhibitor ($40\;{\mu}mol/L$ of SP60015) or ERK inhibitor ($40\;{\mu}mol/L$ of U0126). Also, SB203580 significantly inhibited $TNF-{\alpha}-induced$ monocyte adhesion in HUVEC. Superoxide production was minimal in the basal condition, however, treatment of $TNF-{\alpha}$ induced superoxide production in the dihydroethidineloaded endothelial cells. Diphenyleneiodonium (DPI, $10\;{\mu}mol/L$), an inhibitor of NADPH oxidase, and rotenone $(1\;{\mu}mol/L)$, an inhibitor of mitochondrial complex I inhibited $TNF-{\alpha}-induced$ superoxide production, VCAM-1 expression and monocyte adhesion in the endothelial cells. Taken together, our data suggest that NADPH oxidase and mitochondrial ROS were involved in $TNF-{\alpha}-induced$ VCAM-1 and monocyte adhesion in the endothelial cells.

Involvement of Oxidative Stress and Poly(ADP-ribose) Polymerase Activation in 3-Nitropropionic Acid-induced Cytotoxicity in Human Neuroblastoma Cells

  • Nam, Eun-Joo;Lee, Young-Jae;Oh, Young-Ah;Jung, Jin-Ah;Im, Hye-In;Koh, Seong-Eun;Maeng, Sung-Ho;Joo, Wan-Seok;Kim, Yong-Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.6
    • /
    • pp.325-331
    • /
    • 2003
  • 3-Nitropropionic acid (3-NP) inhibits electron transport in mitochondria, leading to a metabolic failure. In order to elucidate the mechanism underlying this toxicity, we examined a few biochemical changes possibly involved in the process, such as metabolic inhibition, generation of reactive oxygen species (ROS), DNA strand breakage, and activation of Poly(ADP-ribose) polymerase (PARP). Exposure of SK-N-BE(2)C neuroblastoma cells to 3-NP for 48 h caused actual cell death, while inhibition of mitochondrial function was readily observed when exposed for 24 h to low concentrations (0.2${\sim}$2 mM) of 3-NP. The earliest biochemical change detected with low concentration of 3-NP was an accumulation of ROS (4 h after 3-NP exposure) followed by degradation of DNA. PARP activation by damaged DNA was also detectable, but at a later time. The accumulation of ROS and DNA strand breakage were suppressed by the addition of glutathione or N-acetyl-L-cysteine (NAC), which also partially restored mitochondrial function and cell viability. In addition, inhibition of PARP also reduced the 3-NP-induced DNA strand breakage and cytotoxicity. These results suggest that oxidative stress and activation of PARP are the major factors in 3-NP-induced cytotoxicity, and that the inhibition of these factors may be useful in protecting neuroblastoma cells from 3-NP-induced toxicity.

Pharmacokinetic Modeling of Reversible Interconversion between Prednisolone and Prednisone (가역적상호대사과정 모델을 이용한 Prednisolone과 Prednisone의 약동학적 분석)

  • Shin, Jae-Gook;Yoon, Young-Ran;Cha, In-June;Jang, In-Jin;Lee, Kyung-Hoon;Shin, Sang-Goo
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.2
    • /
    • pp.269-281
    • /
    • 1996
  • Pharmacokinetics of prednisolone and prednisone undergoing reversible interconversion were analyzed from the model including this metabolic process. Blood samples were drawn serially upto 12 hours after I,V. bolus injection of 1 mg/kg prednisolone sodium phosphate and prednisone into 8 dogs as a crossover manner. Plasma concentrations of those two steroids were simultaneously measured with the method of HPLC. After injection, plasma concentrations of administered prednisolone and prednisone were declined with a biexponential pattern and their metabolic partner was rapidly formed. Plasma concentrations of those metaboite were decayed in parallel with their parent steroids throught the elimination phase. Apparent clearances of prednisolone and prednisone were $11.1{\pm}2.0\;ml/min/kg$ and $45.9{\pm}6.4\;ml/min/kg$, and they were underestimated by 29.4% and 33.6% compared to their real clearances$(15.7{\pm}4.4\;and\;69.2{\pm}17.7\;ml/min/kg)$ estimated using reversible interconversion model. Apparent volume of distribution of prednisolone$(1.32{\pm}0.43\;L/kg)$ and prednisone$(4.81{\pm}2.75\;L/kg)$ were overestimated by 53.5 and 52.7% and were compared to the real volumes $(0.86{\pm}0.30\;and\;3.15{\pm}2.13\;L/kg)$. Mean residence time of prednisolone$(2.0{\pm}0.61\;h)$ and prednisone$(1.74{\pm}0.74\;h)$ were much longer than the real sojourn time$(0.93{\pm}0.26\;and\;0.88{\pm}0.54\;h)$. Essential clearances In the reversible interconversion were greater as following orders: $Cl_{21}$(44.3 ml/min/kg) > $Cl_{20}$(24.2 ml/min/kg) > $Cl_{12}$ (7.9 ml/min/kg) > $Cl_{10}$(7.8 ml/min/kg). Estimated mean values of RF, EE, $%X^1_{ss}$ and $RHO^2_1$ were $0.31{\pm}0.10$, $1.49{\pm}0.23$, $69.3{\pm}16.7%$ and $0.65{\pm}0.10$, respectively. These results suggested that true pharmacokinetic parameters estimated from the model including reversible interconversion were significantly different from the apparent parameters estimated from the conventional mamillary model, and disposition of these two steroids seemed to be well explained by the model including reversible interconversion.

  • PDF

Mitochondrial calcium uniporter inhibition attenuates mouse bone marrow-derived mast cell degranulation induced by beta-1,3-glucan

  • Dang, Van Cuong;Kim, Hyoung Kyu;Marquez, Jubert;Kim, Nari;Ko, Kyung Soo;Rhee, Byoung Doo;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.2
    • /
    • pp.213-220
    • /
    • 2016
  • Mast cells are primary mediators of allergic inflammation. Beta-1,3-glucan (BG) protects against infection and shock by activating immune cells. Activation of the BG receptor induces an increase in intracellular $Ca^{2+}$, which may induce exocytosis. However, little is known about the precise mechanisms underlying BG activation of immune cells and the possible role of mitochondria in this process. The present study examined whether BG induced mast cell degranulation, and evaluated the role of calcium transients during mast cell activation. Our investigation focused on the role of the mitochondrial calcium uniporter (MCU) in BG-induced degranulation. Black mouse (C57) bone marrow-derived mast cells were stimulated with $0.5{\mu}g/ml$ BG, $100{\mu}g/ml$ peptidoglycan (PGN), or $10{\mu}M$ A23187 (calcium ionophore), and dynamic changes in cytosolic and mitochondrial calcium and membrane potential were monitored. BG-induced mast cell degranulation occurred in a time-dependent manner, and was significantly reduced under calcium-free conditions. Ruthenium red, a mitochondrial $Ca^{2+}$ uniporter blocker, significantly reduced mast cell degranulation induced by BG, PGN, and A23187. These results suggest that the mitochondrial $Ca^{2+}$ uniporter has an important regulatory role in BG-induced mast cell degranulation.

Time-dependent proteomic and genomic alterations in Toll-like receptor-4-activated human chondrocytes: increased expression of lamin A/C and annexins

  • Ha, Seung Hee;Kim, Hyoung Kyu;Nguyen, Thi Tuyet Anh;Kim, Nari;Ko, Kyung Soo;Rhee, Byoung Doo;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.5
    • /
    • pp.531-546
    • /
    • 2017
  • Activation of Toll-like receptor-4 (TLR-4) in articular chondrocytes increases the catabolic compartment and leads to matrix degradation during the development of osteoarthritis. In this study, we determined the proteomic and genomic alterations in human chondrocytes during lipopolysaccharide (LPS)-induced inflammation to elucidate the underlying mechanisms and consequences of TLR-4 activation. Human chondrocytes were cultured with LPS for 12, 24, and 36 h to induce TLR-4 activation. The TLR-4-induced inflammatory response was confirmed by real-time PCR analysis of increased interleukin-1 beta ($IL-1{\beta}$), interleukin-6 (IL-6), and tumor necrosis factor alpha ($TNF-{\alpha}$) expression levels. In TLR-4-activated chondrocytes, proteomic changes were determined by two-dimensional electrophoresis and matrix-assisted laser desorption/ionization-mass spectroscopy analysis, and genomic changes were determined by microarray and gene ontology analyses. Proteomics analysis identified 26 proteins with significantly altered expression levels; these proteins were related to the cytoskeleton and oxidative stress responses. Gene ontology analysis indicated that LPS treatment altered specific functional pathways including 'chemotaxis', 'hematopoietic organ development', 'positive regulation of cell proliferation', and 'regulation of cytokine biosynthetic process'. Nine of the 26 identified proteins displayed the same increased expression patterns in both proteomics and genomics analyses. Western blot analysis confirmed the LPS-induced increases in expression levels of lamin A/C and annexins 4/5/6. In conclusion, this study identified the time-dependent genomic, proteomic, and functional pathway alterations that occur in chondrocytes during LPS-induced TLR-4 activation. These results provide valuable new insights into the underlying mechanisms that control the development and progression of osteoarthritis.

Toxic action of benfuracarb via oxidative bioactivation process by cytochrome $P_{450}$ (Procarbamate계 살충제 benfuracarb의 산화적 활성화 과정을 통한 독성발현)

  • Yu, Yong-Man;Kim, Eun-H.;Kim, Song-Mum;Hur, Jang-Hyun
    • The Korean Journal of Pesticide Science
    • /
    • v.7 no.1
    • /
    • pp.45-50
    • /
    • 2003
  • This study was conducted to understand the role of oxidative enzyme cytochrome $P_{450}$ in the bioactivation of benfuracarb and to know metabolites of benfuracarb by cytochrome $P_{450}$. The bimolecular imhibition rate constant $(k_i)$ of benfuracarb on acetylcholinesterase (AChE) was as low as $1.1{\times}10^3\;M^{-1}\;min^{-1}$, suggesting that benfuracarb should be activated for its toxic action. The potency of benfuracarb on AChE in the oxidase system (cytochrome $P_{450}$ + NADPH) in vitro was 10-fold higher than that of control (cytochrome $P_{450}$). Such a similar result was also found in the oxidase + PBO system. In vivo the $I_{50}$ of benfuracarb was 22.7mg $kg^{-1}$, but pie-treatment of piperonyl butoxide (PBO) reduced the $I_{50}$ by >100mg $kg^{-1}$. This result suggests that cytochrome $P_{450}$ was involved in the activation of benfuracarb. Using microsomal oxidase system, metabolites of benfuracarb were elucidated. Fifty-eight percent of benfuracarb was converted to carbofuran, a major toxic metabolite, in the oxidase system, while only less than two percent of benfuracarb was converted to carbofuran in the oxidase + PBO system. These results also suggest that cytochrome $P_{450}$ was involved in the activation of benfuracarb. Overall results indicate that cytochrome $P_{450}$ could be involved in the bioactivation of benfuracarb to carbofuran.

Review of fungicide resistance problems in Korea (국내 살균제 저항성 문제의 현황과 전망)

  • Kim, Choong-Hoe
    • The Korean Journal of Pesticide Science
    • /
    • v.4 no.2
    • /
    • pp.1-10
    • /
    • 2000
  • Fungicide resistance study in Korea is still in its infancy, and most of those resistance studies are largely limited to newness of the detected resistant strains. In future, detection of fungicide-resistant strains has to be based on sensitivity distribution of pathogen populations to certain fungicides, and standard levels of certain fungicides for resistance should be determined under the basis of this data. Most of the early research on fungicide resistance in Korea has overlooked this point, and resulted in inconsistency and confusion for monitoring sensitivity shift of pathogen population among individual researchers. Fungicide resistance detected in vitro tests has to be documented in field trials by examining control efficacy against resistant and wild-type pathogen populations. Resistance detection in wife has to be correlated with lower activity in practice. Using this process, fungicide resistance will have a practical meaning. Fitness evaluation of resistant strains for survival is, in particular, of importance to determine the future stability of the resistance in the pathogen population. In fields, sensitivity change of pathogen populations should be carefully monitored with and without fungicide selection pressures to establish long-term management strategies against fungicide resistance. It is becoming an urgent task to provide information through research for designing and implementing successful counter-measures against fungicide resistance problems in Korea.

  • PDF

On the Processing and Reduction Factors of Several Pesticides with Welsh Onion (건조 대파의 잔류농약 가공 및 감소계수 연구)

  • Park, So-Yeon;Kang, Hye-Rim;Ko, Kang-Young;Gil, Keun-Hwan;Im, Moo-Hyeog;Lee, Kyu-Seung
    • The Korean Journal of Pesticide Science
    • /
    • v.13 no.4
    • /
    • pp.249-255
    • /
    • 2009
  • In order to calculate the processing and reduction factor between fresh and dry Welsh onion which was widely used as a dried agricultural ingredient of food in Korea. 7 pesticides such as pyridalyl, kresoxim-methyl, spinosad, flufenoxuron, difenoconazole, metconazole, and tebufenozide were tested. After 2 sites field trial conducted and measured water contents by drying at $60^{\circ}C$ and analyzed the pesticide residue. Water contents of fresh and dried Welsh onion are 89.2 and 10.2% respectively. Averages of processing factor showed 7.24 of pyridalyl, 2.85 of kresoxim-methyl, 7.43 of spinosad, 3.17 of flufenoxuron, 4.38 of difenoconazole, 2.40 of metconazole and 8.13 of tebufenozide into 2 field samples. Averages of Reduction factor showed 0.87 of pyridalyl, 0.35 of kresoxim-methyl, 0.88 of spinosad, 0.38 of flufenoxuron, 0.52 of difenoconazole, 0.29 of metconazole and 0.98 of tebufenozide. Residual amounts of pesticides in/on fresh Welsh onion reduced during drying process.

Effect of emergency bell on door to ECG time in walk-in patients presented to emergency department with chest pain (흉통을 주소로 응급실에 내원한 환자에서 심전도 촬영 소요 시간에 대한 응급벨 제도의 효과)

  • Kim, Min-Woo;Oh, Sang-Hoon;Park, Kyu-Nam;Lee, Jung-Min;Lee, Young-Mee;Kim, Han-Joon;Kim, Soo-Hyun;Kang, Dong-Jae
    • Quality Improvement in Health Care
    • /
    • v.20 no.1
    • /
    • pp.12-24
    • /
    • 2014
  • Objectives: The aim of this study was to explore whether emergency bell could shorten door to electrocardiograms (ECG) time in chest pain patients presenting to emergency department (ED) by self-transport. Methods: This was a planned 6-month before-and-after interventional study design. We set up the emergency bell in walk-in patients' waiting room. Prior to the change, patients were triaged before an ECG was obtained. In new process, as soon as patient with chest pain push the emergency bell, emergency physicians examined patient and prioritized performing ECG. We analyzed door to electrocardiograms (DTE) times for patients with chest pain and ST segment elevation myocardial infarction (STEMI) patients between two periods. Results: During the enrollment period, a total of 63 patients called emergency bell. The median DTE time was 6 min (interquartile range: 3.0 - 9.0) and 82.5% received an ECG within 10 minutes, and only three patients were STEMI. DTE time in patient with chest pain was not different between two periods (p=0.980). Before intervention period, 15 walk-in patients admitted in ED for STEMI and 53.8% of STEMI patients received an ECG within 10 minutes. After intervention period, total 19 walk-in patients admitted in ED for STEMI. Of these, 89.5% met the time requirement. Conclusion: Because a small portion of patients with chest pain activated the emergency bell, new strategy for promotion of emergency bell must be needed.