• Title/Summary/Keyword: Process

Search Result 115,265, Processing Time 0.274 seconds

Towards Enacting a SPEM-based Test Process with Maturity Levels

  • Dashbalbar, Amarmend;Song, Sang-Min;Lee, Jung-Won;Lee, Byungjeong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.1217-1233
    • /
    • 2017
  • Effective monitoring and testing during each step are essential for document verification in research and development (R&D) projects. In software development, proper testing is required to verify it carefully and constantly because of the invisibility features of software. However, not enough studies on test processes for R&D projects have been done. Thus, in this paper, we introduce a Test Maturity Model integration (TMMi)-based software field R&D test process that offers five integrity levels and makes the process compatible for different types of projects. The Software & Systems Process Engineering Metamodel (SPEM) is used widely in the software process-modeling context, but it lacks built-in enactment capabilities, so there is no tool or process engine that enables one to execute the process models described in SPEM. Business Process Model and Notation (BPMN)-based workflow engines can be a solution for process execution, but process models described in SPEM need to be converted to BPMN models. Thus, we propose an approach to support enactment of SPEM-based process models by converting them into business processes. We show the effectiveness of our approach through converting software R&D test processes specified in SPEM in a case study.

A Study on Integrated SE Process for the Development of the Railway Systems with Safety Assessment Included (철도 시스템 개발에서 시스템공학 프로세스와 안전성 평가를 동시에 고려한 통합 프로세스에 관한 연구)

  • Yoon, Jae-Han;Lee, Jae-Chon;Hong, Seon-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.4
    • /
    • pp.438-443
    • /
    • 2007
  • This paper proposes an integrated SE process for the development of railway systems with safety assessment included. Although the safety assessment process must be performed with SE process properly with good coordination, the interfaces between the two processes have not been clear. Thus, in many of safety critical system developments in Korea, it is difficult to assess safety in proper development phase. The process model proposed in this paper is based on both the concept of system life cycle and the repetitive use of SE process. In each of development phases, appropriate safety assessment methods are described. Also the evaluation of the integrated system incorporating safety factors is described. The resultant process model is expressed by the Enhanced Functional Flow Block Diagram (EFFBD) using a CASE tool. The model also allows timeline analysis for identifying activity flow and data flow, resulting in the effective management of process. In conclusion, the integrated process enable both the SE process and safety assessment process to cooperate with each other from early development phase throughout the whole system life cycle.

Rule-based Process Control System for multi-product, small-sized production (다품종 소량생산 공정을 위한 규칙기반 공정관리 시스템)

  • Im, Kwang-Hyuk
    • Journal of the Korea Industrial Information Systems Research
    • /
    • v.15 no.1
    • /
    • pp.47-57
    • /
    • 2010
  • There have been many problems to apply SPC(Statistical Process Control) which is a traditional process control technology to the process of multi-product, small-sized production because a machine in the process manufactures small numbers, but various kinds of products. Therefore, we need the new process control system that can flexibly control the process by setting up the SPEC rules and the KNOWHOW rules. The SPEC rule contains the combination of diverse conditions to specify the characteristics of various products. The KNOWHOW rule is based on engineers' know-how. The study suggests the Rule-base Process Control that can be optimized to the multi-product, small-sized production. It was validated in the process of semiconductor production.

Influence of the Optimized Process in Rapid Thermal Processing on Solar Cells (RTP Furnace에서 공정과정이 태양전지에 미치는 영향)

  • Lee, Ji-Youn;Lee, Soo-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • /
    • pp.169-172
    • /
    • 2004
  • The effect of the process parameters on the stable lifetime in rapid thermal firing(RTF) was investigated in order to optimize the process for the Cz-silicon. The process temperature was varied between $700^{\circ}C\;and\;950^{\circ}C$ while the process time was chosen 1 s and 10 s. At below $850^{\circ}C$ the stable lifetime for 10 s is higher than that for 1 s and increases with increasing by the process temperature. However, at over $850^{\circ}C$ the improved stable lifetime is not dependent on the process time and temperature. On the other hand, two high temperature processes in solar cell fabrics are combined with the optimized process and the non-optimized process. The last process determines the stable lifetime. Also, the degraded stable lifetime could be increased by processing in optimized process. The decreased lifetime can increase using the optimized oxidation process, which is a final process in solar cells. Finally, the optimized and non-optimized processes are applied solar cells.

  • PDF

A Study on 0.13μm Cu/Low-k Process Setup and Yield Improvement (0.13μm Cu/Low-k 공정 Setup과 수율 향상에 관한 연구)

  • Lee, Hyun-Ki;Chang, Eui-Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.4
    • /
    • pp.325-331
    • /
    • 2007
  • In this study, the inter-metal dielectric material of FSG was changed by low-k material in $0.13{\mu}m$ foundry-compatible technology (FCT) device process based on fluorinated silicate glass (FSG). Black diamond (BD) was used as a low-k material with a dielectric constant of 2.95 for optimization and yield-improvement of the low-k based device process. For yield-improvement in low-k based device process, some problems such as photoresist (PR) poisoning, damage of low-k in etch/ash/cleaning process, and chemical mechanical planarization (CMP) delamination must be solved. The PR poisoning was not observed in BD based device. The pressure in CMP process decreased to 2.8 psi to remove the CMP delamination for Cu-CMP and USG-CMP. $H_2O$ ashing process was selected instead of $O_2$ ashing process due to the lowest condition of low-k damage. NE14 cleaning after ashing process lot the removal of organic residues in vias and trenches was employed for wet process instead of dilute HF (DHF) process. The similar-state of SRAM yield was obtained in Cu/low-k process compared with the conventional $0.13{\mu}m$ FCT device by the optimization of these process conditions.

Adopting Process Management-the Importance of Recognizing the Organizational Transformation

  • Hellstrom, Andreas;Peterson, Jonas
    • International Journal of Quality Innovation
    • /
    • v.7 no.1
    • /
    • pp.20-34
    • /
    • 2006
  • The purpose of this study is to investigate what happens within an organization when a process view of the business is adopted. With the example of an empirical case, we aim to illustrate: how members of the organization make sense of process management; what contributions members of the organization consider to be the result of adopting a process view; and the relationship between the functional and the process structure. The empirical base in this study is one of Sweden's largest purchasing organizations within the public sector. The results are drawn from interviews with the process owners and a survey to all members involved in process teams. The case findings reveal an ambiguous image of process management. At the same time as process management solved specific organizational problems, it generated new dilemmas. It is argued that it is more rewarding to consider the adoption of the process view a 'social negotiation' rather than the result of planned implementation. The study also highlights that the meaning of process management is not anything given but something being created, and its negotiation and translation into organizational practice is open-ended. Furthermore, the study gives an illustration of the conflict between the adopted process view and the existing functional organization.

Minimization of Residual Stress of the Steel Cord for the Tire-reinforcement Using Finite Element Analysis (유한요소해석을 이용한 타이어 보강재용 스틸코드의 잔류응력 최소화)

  • Lee, Jong-Sup;Huh, Hoon;Lee, Jun-Wu;Lee, Byung-Ho
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • /
    • pp.201-204
    • /
    • 2008
  • In this paper, several process parameter studies of the manufacturing process of the steel cords are carried out to verify the relation between the process parameters and the residual stresses on the steel cords. At first, the finite element analysis of the drawing process is performed and the residual stress distributions with respect to the wire material and the area reduction ratio are obtained. The residual stress of the drawn wire is imported the finite element analysis of the twisting process as an initial stress. After that a parameter study of the twisting process is carried out. The process parameters are the applied tension, the over-twisting angle and the tensile strength of the drawn wire. Based on these studies, the optimum values of the process parameters which can remove or reduce the undesired residual stresses are determined. The optimum value of the process parameters are confirmed by the finite element analysis of the elastic recovery process of the steel cords. Finally, the finite element analysis of the roller straightening process is done to study the variation of the distribution of the residual stress before and after the process.

  • PDF

Efficiency Estimation of Process Plan Using Tolerance Chart

  • Kim I.H.;Dong Zuomin
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.2
    • /
    • pp.148-155
    • /
    • 2006
  • This paper presents a new method for assessing the efficiency of production process plans using tolerance chart to lower production cost. The tolerance chart is used to predict the accuracy of a part that is to be produced following the process plan, and to carry out the quantitative measurement on the efficiency of the process plan. By comparing the values of design tolerances and their corresponding resultant tolerances calculated using the tolerance chart, the process plan that is incapable of satisfying the design requirements and the faulty production operations can be identified. Similarly, the process plan that imposes unnecessarily high accuracy and wasteful production operations can also be identified. For the latter, a quantitative measure on the efficiency of the process plan is introduced. The higher the unnecessary cost of the production, the poor is the efficiency of the process plan. A coefficient is introduced for measuring the process plan efficiency. The coefficient also incorporates two weighting factors to reflect the difficulty of manufacturing operations and number of dimensional tolerances involved. To facilitate the identification of the machining operations and the machined surfaces, which are related to the unnecessarily tight resultant tolerances caused by the process plan, a rooted tree representation of the tolerance chart is introduced, and its use is demonstrated. An example is presented to illustrate the new method. This research introduces a new quantitative process plan evaluation method that may lead to the optimization of process plans.

Process Map for Improving the Dimensional Accuracy in the Multi-Stage Drawing Process of Rectangular Bar with Various Aspect Ratio (다양한 종횡비의 직사각바 다단 인발공정에서 치수정도 향상을 위한 프로세스 맵)

  • Ko, P.S.;Kim, J.H.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.27 no.3
    • /
    • pp.154-159
    • /
    • 2018
  • In the rectangular bar multi-stage drawing process, the cross-section dimensional accuracy of the rectangular bar varies depending on the aspect ratio and process conditions. It is very important to predict the dimensional error of the cross-section occurring in the multi-stage drawing process according to the aspect ratio of the rectangular bar and the half die angle of each pass. In this study, a process map for improving the dimensional accuracy according to the aspect ratio was derived in the drawing process of a rectangular bar. FE-simulation of the multi-stage shape drawing process was carried out with four types of rectangular bar. The results of the FE-simulation were trained to the nonlinear relationship between the shape parameters using an Artificial Neural Network (ANN), and the process maps were derived from them. The optimum half die angles were determined from the process maps on the dimensional accuracy. The validity of the suggested process map for aspect ratios 1.25~2:1 were verified through FE-simulation and experimentation.

Development of the ISEP Based on Systems Engineering (시스템엔지니어링을 적용한 ISEP 개발에 관한 연구)

  • Byun, BoSuk;Choi, YoChul;Park, Young T.
    • Journal of the Korean Society for Quality Management
    • /
    • v.41 no.4
    • /
    • pp.725-735
    • /
    • 2013
  • Purpose: The purpose of this study is to propose an Integrated Safety Evaluation Process (ISEP) that can enhances the safety aspect of the safety-critical system. This process utilizes the advantages of the iterative Systems Engineering process combined with the safety assessment process that is commonly and well defined in many standards and/or guidelines for railway, aerospace, and other safety-critical systems. Methods: The proposed process model is based on the predefined system lifecycle, in each phase of which the appropriate safety assessment activities and the safety data are identified. The interfaces between Systems Engineering process and the safety assessment process are identified before the two processes are integrated. For the integration, the elements at lower level of Systems Engineering process are combined with the relevant elements of safety assessment process. This combined process model is represented as Enhanced Functional Flow Block Diagram (EFFBD) by using CORE(R) that is commercial modelling tool. Results: The proposed model is applied to the lifecycle and management process of the United States aircraft system. The US aircraft systems engineering process are composed of twelve key elements, among which the requirements management, functional analysis, and Synthesis processes are considered for examplenary application of the proposed process. To synchronize the Systems Engineering process and the safety assessment process, the Systems Engineering milestones are utilized, where the US aircraft system has thirteen milestones. Taking into account of the nine steps in the maturity level, the integrated process models are proposed in some phases of lifecycle. The flows of processes are simulated using CORE(R), confirming the flows are timelined without any conflict between the Systems Engineering process and the safety assessment process. Conclusion: ISEP allows the timeline analysis for identifying activity and data flows. Also, the use of CORE(R) is shown to be effective in the management and change of process data, which helps for the ISEP to apply for the development of safety critical system. In this study, only the first few phases of lifecyle are considered, however, the implementation through operation phases can be revised by combining the elements of safety activities regarding those phases.