• Title/Summary/Keyword: Process

Search Result 125,970, Processing Time 0.135 seconds

Prediction of Chemical Composition and Fermentation Parameters in Forage Sorghum and Sudangrass Silage using Near Infrared Spectroscopy

  • Park, Hyung-Soo;Lee, Sang-Hoon;Choi, Ki-Choon;Kim, Ji-Hye;So, Min-Jeong;Kim, Hyeon-Seop
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.35 no.3
    • /
    • pp.257-263
    • /
    • 2015
  • This study was conducted to assess the potential of using NIRS to accurately determine the chemical composition and fermentation parameters in fresh coarse sorghum and sudangrass silage. Near Infrared Spectroscopy (NIRS) has been increasingly used as a rapid and accurate method to analyze the quality of cereals and dried animal forage. However, silage analysis by NIRS has a limitation in analyzing dried and ground samples in farm-scale applications because the fermentative products are lost during the drying process. Fresh coarse silage samples were scanned at 1 nm intervals over the wavelength range of 680~2500 nm, and the optical data were obtained as log 1/Reflectance (log 1/R). The spectral data were regressed, using partial least squares (PLS) multivariate analysis in conjunction with first and second order derivatization, with a scatter correction procedure (standard normal variate and detrend (SNV&D)) to reduce the effect of extraneous noise. The optimum calibrations were selected on the basis of minimizing the standard error of cross validation (SECV). The results of this study showed that NIRS predicted the chemical constituents with a high degree of accuracy (i.e. the correlation coefficient of cross validation ($R^2{_{cv}}$) ranged from 0.86~0.96), except for crude ash which had an $R^2{_{cv}}$ of 0.68. Comparison of the mathematical treatments for raw spectra showed that the second-order derivatization procedure produced the best result for all the treatments, except for neutral detergent fiber (NDF). The best mathematical treatment for moisture, acid detergent fiber (ADF), crude protein (CP) and pH was 2,16,16 respectively while the best mathematical treatment for crude ash, lactic acid and total acid was 2,8,8 respectively. The calibrations of fermentation products produced poorer calibrations (RPD < 2.5) with acetic and butyric acid. The pH, lactic acid and total acids were predicted with considerable accuracy at $R^2{_{cv}}$ 0.72~0.77. This study indicated that NIRS calibrations based on fresh coarse sorghum and sudangrass silage spectra have the capability of assessing the forage quality control

Development of Green Tea Beverage with Organic Tea Leaves (유기농 녹차잎을 이용한 녹차음료의 개발)

  • An, Mi-Kyoung;Ahn, Jun-Bae;Lee, Kwang-Geun
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.5
    • /
    • pp.485-490
    • /
    • 2008
  • In this study, organic tea leaves were characterized with the aim of developing an organic beverage process. The green tea leaves grown using organic farming techniques were collected in Haenam, Korea. Catechins in green tea leaves were extracted by chloroform and ethyl acetate and these were then analyzed quantitatively and qualitatively by HPLC (high pressure liquid chromatography). The color and pH values of the green tea extracts were also measured. The catechin levels of April-harvested, May-harvested and June-harvested, semi-fermented leaves at 0.5% were 66.24, 29.19, 57.11, and 5.27 ${\mu}g/mL$, respectively. Among the detected catechins, the level of (-)-epigallocatechin gallate was the highest while that of (-)-epigallocatechin was not detected. The June-harvested leaves were selected as raw material for development of the green tea beverage, based on the levels of catechins, economic viability and yield of tea extract. As the level of extract increased, the levels of catechins of 0.1, 0.2, 0.5% also increased by 1.5, 11.78 and 41.01 times. From the results of the sensory evaluation of June-harvested leaf-extract, the sensory score of color was the highest in 0.1%, while the flavor and overall quality were the highest in 0.2%.

A Research on Yield Prediction of Mixed Pastures in Korea via Model Construction in Stages (혼파초지에서 모형의 단계적 적용을 통한 수량예측 연구)

  • Oh, Seung Min;Kim, Moon Ju;Peng, Jinglun;Lee, Bae Hun;Kim, Ji Yung;Kim, Byong Wan;Jo, Mu Hwan;Sung, Kyung Il
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.37 no.1
    • /
    • pp.80-91
    • /
    • 2017
  • The objective of this study was to select a model showing high-levels of interpretability which is high in R-squared value in terms of predicting the yield in the mixed pasture using the factors of fertilization, seeding rate and years after pasture establishment in steps, as well as the climate as a basic factor. The processes of constructing the yield prediction model for the mixed pasture were performed in the sequence of data collection (forage and climatic data), preparation, analysis, and model construction. Through this process, six models were constructed after considering climatic variables, fertilization management, seeding rates, and periods after pasture establishment years in steps, thereafter the optimum model was selected through considering the coincidence of the models to the forage production theories. As a result, Model VI (R squared = 53.8%) including climatic variables, fertilization amount, seeding rates, and periods after pasture establishment was considered as the optimum yield prediction model for mixed pastures in South Korea. The interpretability of independent variables in the model were decreased in the sequence of climatic variables(24.5%), fertilization amount(17.8%), seeding rates(10.7%), and periods after pasture establishment(0.8%). However, it is necessary to investigate the reasons of positive correlation between dry matter yield and days of summer depression (DSD) by considering cultivated locations and using other cumulative temperature related variables instead of DSD. Meanwhile the another research about the optimum levels of fertilization amounts and seeding rates is required using the quadratic term due to the certain value-centered distribution of these two variables.

Prediction of the Chemical Composition and Fermentation Parameters of Fresh Coarse Italian Ryegrass Haylage using Near Infrared Spectroscopy

  • Kim, Ji Hye;Park, Hyung Soo;Choi, Ki Choon;Lee, Sang Hoon;Lee, Ki-Won
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.37 no.4
    • /
    • pp.350-357
    • /
    • 2017
  • Near infrared spectroscopy (NIRS) is a rapid and accurate method for analyzing the quality of cereals, and dried animal forage. However, one limitation of this method is its inability to measure fermentation parameters in dried and ground samples because they are volatile, and therefore, respectively lost during the drying process. In order to overcome this limitation, in this study, fresh coarse haylage was used to test the potential of NIRS to accurately determine chemical composition and fermentation parameters. Fresh coarse Italian ryegrass haylage samples were scanned at 1 nm intervals over a wavelength range of 680 to 2500 nm, and optical data were recorded as log 1/reflectance. Spectral data, together with first- and second-order derivatives, were analyzed using partial least squares (PLS) multivariate regressions; scatter correction procedures (standard normal variate and detrend) were used in order to reduce the effect of extraneous noise. Optimum calibrations were selected based on their low standard error of cross validation (SECV) values. Further, ratio of performance deviation, obtained by dividing the standard deviation of reference values by SECV values, was used to evaluate the reliability of predictive models. Our results showed that the NIRS method can predict chemical constituents accurately (correlation coefficient of cross validation, $R_{cv}^2$, ranged from 0.76 to 0.97); the exception to this result was crude ash ($R_{cv}^2=0.49$ and RPD = 2.09). Comparison of mathematical treatments for raw spectra showed that second-order derivatives yielded better predictions than first-order derivatives. The best mathematical treatment for DM, ADF, and NDF, respectively was 2, 16, 16, whereas the best mathematical treatment for CP and crude ash, respectively was 2, 8, 8. The calibration models for fermentation parameters had low predictive accuracy for acetic, propionic, and butyric acids (RPD < 2.5). However, pH, and lactic and total acids were predicted with considerable accuracy ($R_{cv}^2$ 0.73 to 0.78; RPD values exceeded 2.5), and the best mathematical treatment for them was 1, 8, 8. Our findings show that, when fresh haylage is used, NIRS-based calibrations are reliable for the prediction of haylage characteristics, and therefore useful for the assessment of the forage quality.

Effect of Soaking and Heat Treatment Conditions on Physicochemical and Organoleptic Quality of Lotus Root (침지처리 및 열처리 조건이 연근의 관능적 특성 및 이화학적 특성에 미치는 영향)

  • Lee, Sung-Chul;Kim, So-Young;Choi, Sun-Ju;Lee, In-Suk;Jung, Moon-Yung;Yang, Sam-Man;Chae, Hee-Jeong
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.1
    • /
    • pp.45-49
    • /
    • 2010
  • To reduce the astringent taste of lotus root, the effects of various treatment methods such as drying, soaking, steaming and roasting on the physicochemical properties and sensory characteristics were investigated. The following process conditions were selected: 1) drying (D), 2) soaking followed by drying ($SK{\rightarrow}D$), 3) steaming followed by drying ($ST{\rightarrow}D$), 4) drying followed by roasting ($D{\rightarrow}R$), 5) soaking and then drying followed by roasting ($SK{\rightarrow}D{\rightarrow}R$), 6) steaming and then drying followed by roasting ($ST{\rightarrow}D{\rightarrow$}. The tannin content of the lotus root was lowest when it was treated by steaming followed by drying ($ST{\rightarrow}D$). The astringent taste of lotus root was reduced by steaming, and the roasted taste was improved by roasting in terms of sensory and flavor characteristics. Consequently, lotus root treated by steaming and then drying followed by roasting ($ST{\rightarrow}D{\rightarrow}R$) showed the highest preference with respect to astringent and roasted taste.

Changes of the Chemical Constituents and Antioxidant Activity During Microbial-fermented Tea (Camellia sinensis L.) Processing (미생물발효차(Camellia sinensis L.) 제조과정 중의 품질특성 변화)

  • Han, Seon-Kyeong;Song, Yeon-Sang;Lee, Jun-Seol;Bang, Jin-Ki;Suh, Sae-Jung;Cho, Jeong-Young;Moon, Jae-Hak;Park, Keun-Hyung
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.1
    • /
    • pp.21-26
    • /
    • 2010
  • Microbial-fermented tea (MFT), which is made by microorganisms through fermentation, is a popular beverage in Asia, especially in the Yunnam province, China. In this study, changes of the chemical constituents and antioxidant activity during the manufacturing process of MFT were investigated. MFT were respectively prepared from fresh leaves of three different tea species (Yabukita, Daecha, and Korean wild cultivar) and a processed green tea (Korean wild cultivar). The color of the tea infusions gradually changed to red and yellow as a function of fermentation time. Total nitrogen and caffeine contents were not significantly changed. Whereas, the chlorophyll, tannin, and total catechins contents gradually decreased. Interestingly, the epicatechin and epigallocatechin contents increased up to 25 days of fermentation and then decreased. Change of the chemical constituents of all samples showed the same patterns. The antioxidant activity of MFT from Daecha and Yabukita slightly decreased as increasing fermentation time. However, the range over which the antioxidant activity of MFT from Korean wild cultivar and green tea were not changed. This research suggests that it may be possible to manufacturing possibility of MFT using Korean wild cultivar and processed green tea.

Freeze-thawing Conditions to Produce High Quality Bokbunja (Rubus occidentalis) (냉동유통 고품질 복분자 생산을 위한 냉해동 조건 연구)

  • Kim, Jung-Eun;Jo, Hye-Jin;Yu, Min-Ji;Song, Kyung Bin;Kim, Ha-Yun;Hwang, In Guk;Yoo, Seon Mi;Han, Gwi Jung;Park, Jong-Tae
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.6
    • /
    • pp.710-715
    • /
    • 2014
  • To date, the quality and safety of frozen bokbunja have not been clearly assessed. To produce high-quality frozen bokbunja, the optimal freeze-thaw conditions need to be explored. The most popular cultivar (Rubus occidentalis) in Korea was selected for this study. To determine the changes in the quality of frozen R. occidentalis berries, different freezing temperatures were used. The berries were frozen at -20, -45, and $-70^{\circ}C$ immediately after harvest. The drip ratio, hardness, pH, sugar content, color, and anthocyanidin content of the frozen and thawed samples were analyzed. The drip ratio, sugar content, and hardness of the berries correlated significantly with the freezing temperatures. The color and pH of the berries were not significantly affected by the freezing conditions. Frozen leaks between cells reduced significantly with decreasing temperatures. The freeze-thawing process significantly reduced the total aerobic bacteria and inhibited the growth of yeast/mold in the berries to about 2 log scales.

Special Issue for the 30th Anniversary of the Korean Academy of Health Policy and Management (한국보건행정학회 30주년 기념 특별호)

  • Park, Eun-Cheol
    • Health Policy and Management
    • /
    • v.28 no.3
    • /
    • pp.195-196
    • /
    • 2018
  • The Korean Academy of Health Policy and Management (KAHPM) has shown remarkable achievements in the field of health policy and management in Korea for the last 30 years. The KAHPM consists of experts in various fields of health policy and management, and has been the leading academic discussion forum for health policy agendas of interest to the public. Health Policy and Management (HPM), the official journal of the KAHPM, published the first issue of volume 1 in October, 1991 and is publishing the second issue of volume 28 as of 2018. Currently, it is one of Korea' main journals in the field of health policy and management. HPM has published a special issue in commemoration of the 30th anniversary of the KAHPM. The HPM invited authors, including former presidents of the KAHPM and current board members, to write about main issues in health policy and management. Although the HPM tried to set up an invited author on all subjects in the health policy and management field, 19 papers are published, that completed the peer review process by August, 2018. The authors of the special issue of the 30th anniversary of the KAHPM include six former presidents, a senior professor, and 12 board members. The subjects of this issue are reform of the healthcare delivery system, health insurance and medical policy, reform of health system governance, the role of National Health Insurance Service (NHIS), the Korea Institute for Health and Social Affairs (KIHASA) and the National Evidence-based healthcare Collaborating Agency (NECA), ethical aspects of health policy change, regional disparities of healthcare, healthcare accreditation, new healthcare technology evaluation system, globalization of the healthcare industry, the epidemiological investigator system, the quarantine system, safety and disaster, and official development assistance. There are some remaining topics to deal with for the KAHPM: aged society, anti-smoking, non-infectious disease, suicide, healthcare resources, emergency medical care, out-of-pocket money, medical fee payment system, medical aid system, long-term care insurance, industrial accident compensation insurance, community-centered health welfare system, and central government and local government of health. The HPM will continue to publish review articles on the main topics in health policy and management. This is because the KAHPM, which has been the leading academic society of Korea's health policy and management for the last 30 years, feels responsible for continuing its mission for the next 30 years.

Models for Spiritual Care in Hospice and Palliative Care

  • Kang, Kyung-Ah
    • Journal of Hospice and Palliative Care
    • /
    • v.21 no.2
    • /
    • pp.41-50
    • /
    • 2018
  • Spirituality is an essential part of human beings. Spiritual care, designed to meet the spiritual needs of terminally ill patients and their families, is one of the most important aspects of hospice and palliative care (HPC). This study reviewed and analyzed literature utilizing the most commonly used Korean and international healthcare databases to identify care models that adequately address the spiritual needs of terminally ill patients and their families in practice. The results of this study show that spirituality is an intrinsic part of humans, meaning that people are holistic beings. The literature has provided ten evidence-based theories that can be used as models in HPC. Three of the models focus on how the spiritual care outcomes of viewing spiritual health, quality of life, and coping, are important outcomes. The remaining seven models focus on implementation of spiritual care. The "whole-person care model" addresses the multidisciplinary collaboration within HPC. The "existential functioning model" emphasizes the existential needs of human beings. The "open pluralism view" considers the cultural diversity and other types of diversity of care recipients. The "spiritual-relational view" and "framework of systemic organization" models focus on the relationship between hospital palliative care teams and terminally ill patients. The "principal components model" and "actioning spirituality and spiritual care in education and training model" explain the overall dynamics of the spiritual care process. Based on these models, continuous clinical research efforts are needed to establish an optimal spiritual care model for HPC.

A Real-Time Multiple Circular Buffer Model for Streaming MPEG-4 Media (MPEG-4 미디어 스트리밍에 적합한 실시간형 다중원형버퍼 모델)

  • 신용경;김상욱
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.9 no.1
    • /
    • pp.13-24
    • /
    • 2003
  • MPEG-4 is a standard for multimedia applications and provides a set of technologies to satisfy the needs of authors, service providers and end users alike. In this paper, we suggest a Real-time Multiple Circular Buffer (M4RM Buffer) model, which is suitable for streaming these MPEG-4 contents efficiently. M4RM buffer generates each structure of the buffer, which matches well with each object composing an MPEG-4 content, according to the transferred information, and manipulates multiple read/write operations only by its reference. It divides the decoder buffer and the composition buffer, which are described in the standard, by the unit of frame allocated to minimize the range of access. This buffer unit of a frame is allocated according to the object description. Also, it processes the objects synchronization within the buffer and provides APIs for an efficient buffer management to process the real-time user events. Based on the performance evaluation, we show that M4RM buffer model decreases the waiting time in a buffer frame, and so allows the real-time streaming of an MPEG-4 content using the smaller size of the memory block than IM1-2D and Window Media Player.