• Title/Summary/Keyword: Procedure Task

Search Result 383, Processing Time 0.023 seconds

Implementation of DYLAM-3 to Core Uncovery Frequency Estimation in Mid-Loop Operation

  • Kim, Dohyoung;Chang hyun Chung;Moosung Jae
    • Nuclear Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.531-540
    • /
    • 1998
  • The DYLAM-3 code which overcomes the limitation of event tree/fault tree was applied to LOOP (Loss of Off-site Power) in the mid-loop operation employing HEPs (Human Error Probabilities) supplied by the ASEP (Accident Sequence Evaluation Program) and the SEPLOT (Systematic Evaluation Procedure for Low power/shutdown Operation Task) procedure in this study. Thus the time history of core uncovery frequency during the mid-loop operation was obtained. The sensitivity calculations in the operator's actions to prevent core uncovery under LOOP in the mid-loop operation were carried out. The analysis using the time dependent HEP was performed on the primary feed & bleed which has the most significant effect on core uncovery frequency. As the result, the increment of frequency is shown after 200 minutes duration of simulation conditions. This signifies the possibility of increment in risk after 200 minutes. The primary feed & bleed showed the greatest impact on core uncovery frequency and the recovery of the SCS (Shutdown Cooling System) showed the least impact. Therefore the efforts should be taken on the primary feed & bleed to reduce the core uncovery frequency in the mid-loop operation. And the capability of DYLAM-3 in applying to the time dependent concerns could be demonstrated.

  • PDF

A Systematic Generation of CTQ Candidates in DFSS/C : Methodology Development and A Case Study (DFSS/C의 CTQ 후보 체계적인 도출을 위한 체계적 방법론 연구)

  • Kim, Kwang-Jae;Min, Dae-Kee;Kim, Deok-Hwan;Choi, Bong;Lee, Pal-Hun;Lee, Seung-Hyun
    • Journal of Korean Society for Quality Management
    • /
    • v.33 no.2
    • /
    • pp.74-86
    • /
    • 2005
  • The project objectives, called critical-to-quality (CTQs) in six sigma, should be defined to faithfully reflect the customer requirements. The identification of such a set of CTQs, which is currently done using brainstorming in practice, is a challenging task. Notwithstanding the rapid growth of the six sigma literature, development of a systematic procedure for identifying CTQs has scarcely been addressed. This paper proposes a systematic method for generating CTQ candidates based on the given voice of the customer in the DFSS/C (Design for Six Sigma / Commercial) context. By providing a step-by-step procedure, the proposed method ensures that all the important CTQ candidates are identified and subjective judgments are minimally required. Hence, the shortcomings associated with the existing practice based on brainstorming can be effectively overcome. The unique characteristics of the proposed method are also demonstrated via a case study.

Examining how elementary students understand fractions and operations (초등학생의 분수와 분수 연산에 대한 이해 양상)

  • Park, HyunJae;Kim, Gooyeon
    • The Mathematical Education
    • /
    • v.57 no.4
    • /
    • pp.453-475
    • /
    • 2018
  • This study examines how elementary students understand fractions with operations conceptually and how they perform procedures in the division of fractions. We attempted to look into students' understanding about fractions with divisions in regard to mathematical proficiency suggested by National Research Council (2001). Mathematical proficiency is identified as an intertwined and interconnected composition of 5 strands- conceptual understanding, procedural fluency, strategic competence, adaptive reasoning, and productive disposition. We developed an instrument to identify students' understanding of fractions with multiplication and division and conducted the survey in which 149 6th-graders participated. The findings from the data analysis suggested that overall, the 6th-graders seemed not to understand fractions conceptually; in particular, their understanding is limited to a particular model of part-whole fraction. The students showed a tendency to use memorized procedure-invert and multiply in a given problem without connecting the procedure to the concept of the division of fractions. The findings also proposed that on a given problem-solving task that suggested a pathway in order for the students to apply or follow the procedures in a new situation, they performed the computation very fluently when dividing two fractions by multiplying by a reciprocal. In doing so, however, they appeared to unable to connect the procedures with the concepts of fractions with division.

NEW ASPECTS OF MEASURING NOISE AND VIBRATION

  • Genuit, K.
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.796-801
    • /
    • 1994
  • Measuring noise, sound quality or acoustical comfort presents a difficult task for the acoustic engineer. Sound and noise are ultimately jugded by human beings acting as analysers. Regulations for determining noise levels are based on A-weighted SPL measurement performed with only one microphone. This method of measurement is usually specified when determining whether the ear can be physically damaged. Such a simple measurement procedure is not able to determine annoyance of sound events or sound quality in general. For some years investigations with binaural measurement analysis technique have shown new possibilities for the objective determination of sound quality. By using Artificial Head technology /1/, /2/ in conjunction with psychoacoustic evaluation algorithms - and taking into account binaural signal processing of human hearing, considerable progress regarding the analysis of sounds has been made. Because sound events often arise in a complex way, direct conclusions about components subjectively judged to be annoying with regard to their causes and transmission paths, can be drawn in a limited way only. A new procedure, complementing binaural measurement technology combined with mulit-channel measuements of acceleration sensor signals has been developed. This involves correlating signals influencing sound quality, analyzed by means of human hearing, with signals form different acceleration sensors fixed at different positions of the sound source. Now it is possible to recognize the source and the transmission way of those signals which have an influence on the annoyance of sound.

  • PDF

A novel laboratory method for measuring the hydraulic conductivity of dredged slurry with high water contents

  • Cong Mou;Jian-wen Ding;Jian-hua Wang;Xing Wan
    • Geomechanics and Engineering
    • /
    • v.33 no.3
    • /
    • pp.317-326
    • /
    • 2023
  • Accurately measuring the hydraulic conductivity of dredged slurry (HCODS) is a difficult task and usually requires highly developed experimental techniques. To resolve such problem, this paper presents a novel laboratory method, where a double drainage sedimentation test (DDST) is proposed to generate a downward seepage after the end of primary consolidation (EOP). Based on the established stress equilibrium equations, it is figured out that the determination of local hydraulic gradients requires the effective stress distribution to be measured. Accordingly, an additional single drainage sedimentation test (SDST) with the same initial water content is performed in the novel laboratory method, which can be utilized to establish the relationship between effective stress and water content for investigated slurry. Thus, HCODS can be determined via a pair of SDST and DDST, with the water contents after the EOP measured. The corresponding calculation procedure is given in details. With a simply-designed settling column, the hydraulic conductivity tests were performed on three types of dredged slurry. The results demonstrated the effectiveness of the novel laboratory method in measuring HCODS.

Buffeting-induced stresses in a long suspension bridge: structural health monitoring oriented stress analysis

  • Liu, T.T.;Xu, Y.L.;Zhang, W.S.;Wong, K.Y.;Zhou, H.J.;Chan, K.W.Y.
    • Wind and Structures
    • /
    • v.12 no.6
    • /
    • pp.479-504
    • /
    • 2009
  • Structural health monitoring (SHM) systems have been recently embraced in long span cable-supported bridges, in which buffeting-induced stress monitoring is one of the tasks to ensure the safety of the bridge under strong winds. In line with this task, this paper presents a SHM-oriented finite element model (FEM) for the Tsing Ma suspension bridge in Hong Kong so that stresses/strains in important bridge components can be directly computed and compared with measured ones. A numerical procedure for buffeting induced stress analysis of the bridge based on the established FEM is then presented. Significant improvements of the present procedure are that the effects of the spatial distribution of both buffeting forces and self-excited forces on the bridge deck structure are taken into account and the local structural behaviour linked to strain/stress, which is prone to cause local damage, are estimated directly. The field measurement data including wind, acceleration and stress recorded by the wind and structural health monitoring system (WASHMS) installed on the bridge during Typhoon York are analyzed and compared with the numerical results. The results show that the proposed procedure has advantages over the typical equivalent beam finite element models.

Verification of Mechanical Leaf Gap Error and VMAT Dose Distribution on Varian VitalBeamTM Linear Accelerator

  • Kim, Myeong Soo;Choi, Chang Heon;An, Hyun Joon;Son, Jae Man;Park, So-Yeon
    • Progress in Medical Physics
    • /
    • v.29 no.2
    • /
    • pp.66-72
    • /
    • 2018
  • The proper position of a multi-leaf collimator (MLC) is essential for the quality of intensity-modulated radiation therapy (IMRT) and volumetric modulated arc radiotherapy (VMAT) dose delivery. Task Group (TG) 142 provides a quality assurance (QA) procedure for MLC position. Our study investigated the QA validation of the mechanical leaf gap measurement and the maintenance procedure. Two $VitalBeam^{TM}$ systems were evaluated to validate the acceptance of an MLC position. The dosimetric leaf gaps (DLGs) were measured for 6 MV, 6 MVFFF, 10 MV, and 15 MV photon beams. A solid water phantom was irradiated using $10{\times}10cm^2$ field size at source-to-surface distance (SSD) of 90 cm and depth of 10 cm. The portal dose image prediction (PDIP) calculation was implemented on a treatment planning system (TPS) called $Eclipse^{TM}$. A total of 20 VMAT plans were used to confirm the accuracy of dose distribution measured by an electronic portal imaging device (EPID) and those predicted by VMAT plans. The measured leaf gaps were 0.30 mm and 0.35 mm for VitalBeam 1 and 2, respectively. The DLG values decreased by an average of 6.9% and 5.9% after mechanical MLC adjustment. Although the passing rates increased slightly, by 1.5% (relative) and 1.2% (absolute) in arc 1, the average passing rates were still within the good dose delivery level (>95%). Our study shows the existence of a mechanical leaf gap error caused by a degenerated MLC motor. This can be recovered by reinitialization of MLC position on the machine control panel. Consequently, the QA procedure should be performed regularly to protect the MLC system.

A Study on the Bulletproof Reliability Program (방탄물자 신뢰성 평가(BRP)에 관한 연구)

  • Gu, Seung Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.300-307
    • /
    • 2020
  • This study examines the reliability evaluation concept and procedure of bulletproof materials (BRP: Bulletproof Reliability Program). ASRP, RAM analysis tasks were utilized for the study. Based on this analysis, the concept, method, performance system, and procedure of BRP were examined. The BRP task execution procedure consists of the following four steps. First, the business (evaluation) planning stage establishes the evaluation plan every year. Second, there is a testing stage that performs the general inspection, functional test, and operational test according to the established plan. Thirdly, there is an evaluation/analysis phase to synthesize/analyze the results and to judge the appropriate grade considering the performance of bulletproof materials. Finally, the follow-up step of each group according to the result. The following criteria are suggested for BRP implementation: BRP testing capability, development of BRP evaluation method, and recognition of the importance of BRP business.

Self-Learning Control of Cooperative Motion for Humanoid Robots

  • Hwang, Yoon-Kwon;Choi, Kook-Jin;Hong, Dae-Sun
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.6
    • /
    • pp.725-735
    • /
    • 2006
  • This paper deals with the problem of self-learning cooperative motion control for the pushing task of a humanoid robot in the sagittal plane. A model with 27 linked rigid bodies is developed to simulate the system dynamics. A simple genetic algorithm(SGA) is used to find the cooperative motion, which is to minimize the total energy consumption for the entire humanoid robot body. And the multi-layer neural network based on backpropagation(BP) is also constructed and applied to generalize parameters, which are obtained from the optimization procedure by SGA, in order to control the system.

A REVIEW ON REDUCTION IN FINITE ELEMENT ANALYSIS

  • Kim, Ki-Ook;Park, Young-Jae
    • Journal of Theoretical and Applied Mechanics
    • /
    • v.3 no.1
    • /
    • pp.1-15
    • /
    • 2002
  • Reduction methods for large structural systems have been reviewed. Mai emphasis is put on the dynamic reduction. Recently, the computing resources and technologies have been expanded so fast that the huge matrices Invoked In the analysis of structural system can be processed without serious difficulties. For most users, however, the computer facilities are limited and the system reductions in some forms are required. The reduction procedure in static problems is simple and straightforward. The major task is the book-keeping in computations. In dynamic problems and structural optimization. however. the problem is much more complicated. The problem is, in general, nonlinear and hence the exact solution is not available. Therefore, approximate solutions are sought in an iterative manner. A proper convergence criterion needs to be employed in order to get an accurate solution efficiently. Several research works have been reported fer the structural optimization combined with system reductions.

  • PDF